A “Natural” Norm for the Method of Characteristics Using Discontinuous Finite Elements : 2D and 3D case
Baranger, Jacques; Machmoum, Ahmed; Baranger Jacques; MCS, Université Lyon 1, 43 bd. du 11 Novembre 1918, 69622 Villeurbanne Cedex, France. baranger@lan.univ-lyon1.fr.; Machmoum Ahmed; Équipe de Modélisation, Équations aux Dérivées Partielles et Analyse Numérique, Université Hassan 2, Faculté des sciences et techniques Mohammedia, B.P 146, 20650 Morocco. machmoum@deneb.uh2m.ac.ma.
Журнал:
ESAIM: Mathematical Modelling and Numerical Analysis
Дата:
1999
Аннотация:
We consider the numerical approximation of a first order stationary hyperbolic equation by the method of characteristics with pseudo time step k using discontinuous finite elements on a mesh ${\cal T}_h$. For this method, we exhibit a “natural” norm || ||<sub>h,k</sub> for which we show that the discrete variational problem $P_h^k$ is well posed and we obtain an error estimate. We show that when k goes to zero problem $(P_h^k)$ (resp. the || ||<sub>h,k</sub> norm) has as a limit problem (P <sub> h </sub>) (resp. the || ||<sub>h</sub> norm) associated to the Galerkin discontinuous method. This extends to two and three space dimension our previous results obtained in one space dimension.
190.7Кб