Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Jim Douglas Jr.
Автор Santos, Juan E.
Автор Sheen, Dongwoo
Автор Ye, Xiu
Дата выпуска 1999
dc.description Low-order nonconforming Galerkin methods will be analyzed for second-order elliptic equations subjected to Robin, Dirichlet, or Neumann boundary conditions. Both simplicial and rectangular elements will be considered in two and three dimensions. The simplicial elements will be based on P <sub>1</sub>, as for conforming elements; however, it is necessary to introduce new elements in the rectangular case. Optimal order error estimates are demonstrated in all cases with respect to a broken norm in H <sup>1</sup>(Ω) and in the Neumann and Robin cases in L <sup>2</sup>(Ω).
Формат application.pdf
Издатель EDP Sciences
Копирайт © EDP Sciences, SMAI, 1999
Тема Nonconforming Galerkin methods
Тема quadrilateral elements
Тема second order elliptic problems
Тема domain decomposition iterative methods.
Название Nonconforming Galerkin methods based on quadrilateral elements for second order elliptic problems
Тип research-article
DOI 10.1051/m2an:1999161
Electronic ISSN 1290-3841
Print ISSN 0764-583X
Журнал ESAIM: Mathematical Modelling and Numerical Analysis
Том 33
Первая страница 747
Последняя страница 770
Аффилиация Jim Douglas Jr. ; Center for Applied Mathematics, Purdue University, West Lafayette, IN 47907-1395, USA. Supported in part by the NSF and the ONR. douglas@math.purdue.edu.
Аффилиация Santos Juan E.; Center for Applied Mathematics, Purdue University, West Lafayette, IN 47907-1395, USA, and CONICET, Observatorio Astronomico, Universidad Nacional de La Plata, La Plata 1900, Argentina.
Аффилиация Sheen Dongwoo; Department of Mathematics, Seoul National University, Seoul 151-742, Korea. Supported in part by KOSEF-GARC and BSRI-MOE-97.
Аффилиация Ye Xiu; Department of Mathematics and Statistics, University of Arkansas at Little Rock, Little Rock, AR 72204-1099, USA.
Выпуск 4

Скрыть метаданые