Автор |
Prohl, Andreas |
Дата выпуска |
1999 |
dc.description |
The minimization of nonconvex functionals naturally arises in materials sciences where deformation gradients in certain alloys exhibit microstructures. For example, minimizing sequences of the nonconvex Ericksen-James energy can be associated with deformations in martensitic materials that are observed in experiments[2,3]. — From the numerical point of view, classical conforming and nonconforming finite element discretizations have been observed to give minimizers with their quality being highly dependent on the underlying triangulation, see [8,24,26,27] for a survey. Recently, a new approach has been proposed and analyzed in [15,16] that is based on discontinuous finite elements to reduce the pollution effect of a general triangulation on the computed minimizer. The goal of the present paper is to propose and analyze an adaptive method, giving a more accurate resolution of laminated microstructure on arbitrary grids. |
Формат |
application.pdf |
Издатель |
EDP Sciences |
Копирайт |
© EDP Sciences, SMAI, 1999 |
Тема |
Adaptive algorithm |
Тема |
finite element method |
Тема |
nonconvex minimization |
Тема |
multi-well problem |
Тема |
microstructure |
Тема |
multiscale |
Тема |
nonlinear elasticity |
Тема |
shape-memory alloy |
Тема |
materials science. |
Название |
An adaptive finite element method for solving a double well problem describing crystalline microstructure |
Тип |
research-article |
DOI |
10.1051/m2an:1999163 |
Electronic ISSN |
1290-3841 |
Print ISSN |
0764-583X |
Журнал |
ESAIM: Mathematical Modelling and Numerical Analysis |
Том |
33 |
Первая страница |
781 |
Последняя страница |
796 |
Аффилиация |
Prohl Andreas; Mathematisches Seminar, Christian-Albrechts-Universität Kiel, Ludewig-Meyn-Str. 4, 24098 Kiel, Germany. apr@numerik.uni-kiel.de. |
Выпуск |
4 |