Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Prohl, Andreas
Дата выпуска 1999
dc.description The minimization of nonconvex functionals naturally arises in materials sciences where deformation gradients in certain alloys exhibit microstructures. For example, minimizing sequences of the nonconvex Ericksen-James energy can be associated with deformations in martensitic materials that are observed in experiments[2,3]. — From the numerical point of view, classical conforming and nonconforming finite element discretizations have been observed to give minimizers with their quality being highly dependent on the underlying triangulation, see [8,24,26,27] for a survey. Recently, a new approach has been proposed and analyzed in [15,16] that is based on discontinuous finite elements to reduce the pollution effect of a general triangulation on the computed minimizer. The goal of the present paper is to propose and analyze an adaptive method, giving a more accurate resolution of laminated microstructure on arbitrary grids.
Формат application.pdf
Издатель EDP Sciences
Копирайт © EDP Sciences, SMAI, 1999
Тема Adaptive algorithm
Тема finite element method
Тема nonconvex minimization
Тема multi-well problem
Тема microstructure
Тема multiscale
Тема nonlinear elasticity
Тема shape-memory alloy
Тема materials science.
Название An adaptive finite element method for solving a double well problem describing crystalline microstructure
Тип research-article
DOI 10.1051/m2an:1999163
Electronic ISSN 1290-3841
Print ISSN 0764-583X
Журнал ESAIM: Mathematical Modelling and Numerical Analysis
Том 33
Первая страница 781
Последняя страница 796
Аффилиация Prohl Andreas; Mathematisches Seminar, Christian-Albrechts-Universität Kiel, Ludewig-Meyn-Str. 4, 24098 Kiel, Germany. apr@numerik.uni-kiel.de.
Выпуск 4

Скрыть метаданые