Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Mäkinen, Raino A.E.
Автор Rossi, Tuomo
Автор Toivanen, Jari
Дата выпуска 2000
dc.description A new numerical method based on fictitious domain methods for shape optimization problems governed by the Poisson equation is proposed. The basic idea is to combine the boundary variation technique, in which the mesh is moving during the optimization, and efficient fictitious domain preconditioning in the solution of the (adjoint) state equations. Neumann boundary value problems are solved using an algebraic fictitious domain method. A mixed formulation based on boundary Lagrange multipliers is used for Dirichlet boundary problems and the resulting saddle-point problems are preconditioned with block diagonal fictitious domain preconditioners. Under given assumptions on the meshes, these preconditioners are shown to be optimal with respect to the condition number. The numerical experiments demonstrate the efficiency of the proposed approaches.
Формат application.pdf
Издатель EDP Sciences
Копирайт © EDP Sciences, SMAI, 2000
Тема Shape optimization
Тема fictitious domain method
Тема preconditioning
Тема boundary variation technique
Тема sensitivity analysis.
Название A moving mesh fictitious domain approach for shape optimization problems
Тип research-article
DOI 10.1051/m2an:2000129
Electronic ISSN 1290-3841
Print ISSN 0764-583X
Журнал ESAIM: Mathematical Modelling and Numerical Analysis
Том 34
Первая страница 31
Последняя страница 45
Аффилиация Mäkinen Raino A.E.; Department of Mathematical Information Technology, University of Jyväskylä, P.O. Box 35 (MaE), 40351 Jyväskylä, Finland. (Raino.Makinen@mit.jyu.fi)
Аффилиация Rossi Tuomo; Department of Mathematical Information Technology, University of Jyväskylä, P.O. Box 35 (MaE), 40351 Jyväskylä, Finland. (Tuomo.Rossi@mit.jyu.fi)
Аффилиация Toivanen Jari; Department of Mathematical Information Technology, University of Jyväskylä, P.O. Box 35 (MaE), 40351 Jyväskylä, Finland. (Jari.Toivanen@mit.jyu.fi)
Выпуск 1

Скрыть метаданые