Автор |
Galusinski, Cédric |
Дата выпуска |
2000 |
dc.description |
The aim of this work is to establish, from a mathematical point of view, the limit α → +∞ in the system $ i \partial_t E+\nabla (\nabla . E)-\alpha^2 \nabla \times \nabla \times E =-|E|^{2\sigma}E, $ where $E:{\ensuremath{{\Bbb R}}}^3\rightarrow{\mathbb C}^3$. This corresponds to an approximation which is made in the context of Langmuir turbulence in plasma Physics. The L <sup>2</sup>-subcritical σ (that is σ ≤ 2/3) and the H <sup>1</sup>-subcritical σ (that is σ ≤ 2) are studied. In the physical case σ = 1, the limit is then studied for the $H^1({\ensuremath{{\Bbb R}}}^3)$ norm. |
Формат |
application.pdf |
Издатель |
EDP Sciences |
Копирайт |
© EDP Sciences, SMAI, 2000 |
Тема |
Nonlinear Schrödinger equation |
Тема |
singular perturbation. |
Название |
A singular perturbation problem in a system of nonlinear Schrödinger equation occurring in Langmuir turbulence |
Тип |
research-article |
DOI |
10.1051/m2an:2000133 |
Electronic ISSN |
1290-3841 |
Print ISSN |
0764-583X |
Журнал |
ESAIM: Mathematical Modelling and Numerical Analysis |
Том |
34 |
Первая страница |
109 |
Последняя страница |
125 |
Аффилиация |
Galusinski Cédric; Université Bordeaux I, Mathématiques Appliquées Bordeaux, ESA 5466 CNRS, 351 cours de la libération, 33400 Talence, France. (galusins@math.u-bordeaux.fr) |
Выпуск |
1 |