Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Homsy, Alexandra
Автор Koster, Sander
Автор Eijkel, Jan C. T.
Автор van den Berg, Albert
Автор Lucklum, F.
Автор Verpoorte, E.
Автор de Rooij, Nico F.
Дата выпуска 2005
dc.description This paper describes the working principle of a DC magnetohydrodynamic (MHD) micropump that can be operated at high DC current densities (J) in 75-µm-deep microfluidic channels without introducing gas bubbles into the pumping channel. The main design feature for current generation is a micromachined frit-like structure that connects the pumping channel to side reservoirs, where platinum electrodes are located. Current densities up to 4000 A m<sup>â 2</sup> could be obtained without noticeable Joule heating in the system. The pump performance was studied as a function of current density and magnetic field intensity, as well as buffer ionic strength and pH. Bead velocities of up to 1 mm s<sup>â 1</sup> (0.5 µL min<sup>â 1</sup>) were observed in buffered solutions using a 0.4 T NdFeB permanent magnet, at an applied current density of 4000 A m<sup>â 2</sup>. This pump is intended for transport of electrolyte solutions having a relatively high ionic strength (0.5â 1 M) in a DC magnetic field environment. The application of this pump for the study of biological samples in a miniaturized total analysis system (µTAS) with integrated NMR detection is foreseen. In the 7 T NMR environment, a minimum 16-fold increase in volumetric flow rate for a given applied current density is expected.
Формат application.pdf
Издатель Royal Society of Chemistry
Название A high current density DC magnetohydrodynamic (MHD) micropump
Тип research-article
DOI 10.1039/b417892k
Electronic ISSN 1473-0189
Print ISSN 1473-0197
Журнал Lab on a Chip
Том 5
Первая страница 466
Последняя страница 471
Аффилиация Homsy Alexandra; Institute of Microtechnology, University of Neuchâtel
Аффилиация KosterPresent address: Groningen Research Institute of Pharmacy, University of Groningen, The Netherlands. Sander; Institute of Microtechnology, University of Neuchâtel
Аффилиация Eijkel Jan C. T.; MESA + Research Institute, University of Twente
Аффилиация van den Berg Albert; MESA + Research Institute, University of Twente
Аффилиация Lucklum F.; Institute of Microtechnology, University of Neuchâtel
Аффилиация Verpoorte E.; Groningen Research Institute of Pharmacy, University of Groningen
Аффилиация de Rooij Nico F.; Institute of Microtechnology, University of Neuchâtel
Выпуск 4
Библиографическая ссылка Laser, J. Micromech. Microeng., 2004, 14, R35
Библиографическая ссылка Ritchie, Philos. Trans. R. Soc. London, 1833, 123, 313
Библиографическая ссылка Jang, Sens. Actuators A, 2000, 80, 84
Библиографическая ссылка Bau, Sens. Actuators B, 2001, 79, 207
Библиографическая ссылка Zhong, Sens. Actuators A, 2002, 96, 59
Библиографическая ссылка Bau, Sens. Actuators B, 2003, 88, 205
Библиографическая ссылка Lemoff, Sens. Actuators B, 2000, 63, 178
Библиографическая ссылка West, Lab Chip, 2002, 2, 224
Библиографическая ссылка Eijkel, Sens. Actuators B, 2003, 92, 215
Библиографическая ссылка West, Sens. Actuators B, 2003, 96, 190
Библиографическая ссылка Xiang, Phys. Rev. E, 2003, 68, 16312
Библиографическая ссылка Massin, J. Magn. Reson., 2003, 164, 286
Библиографическая ссылка Gravesen, J. Microchech. Microeng., 1993, 3, 168
Библиографическая ссылка Raymond, Anal. Chem., 1994, 66, 2858
Библиографическая ссылка Nelson, J. Chomatogr., 1989, 480, 111
Библиографическая ссылка Garcia Campana, J. Microcolumn Separations, 1998, 10, 339
Библиографическая ссылка Behrens, J. Chem. Phys., 2001, 115, 6716

Скрыть метаданые