Автор |
Homsy, Alexandra |
Автор |
Koster, Sander |
Автор |
Eijkel, Jan C. T. |
Автор |
van den Berg, Albert |
Автор |
Lucklum, F. |
Автор |
Verpoorte, E. |
Автор |
de Rooij, Nico F. |
Дата выпуска |
2005 |
dc.description |
This paper describes the working principle of a DC magnetohydrodynamic (MHD) micropump that can be operated at high DC current densities (J) in 75-µm-deep microfluidic channels without introducing gas bubbles into the pumping channel. The main design feature for current generation is a micromachined frit-like structure that connects the pumping channel to side reservoirs, where platinum electrodes are located. Current densities up to 4000 A m<sup>â 2</sup> could be obtained without noticeable Joule heating in the system. The pump performance was studied as a function of current density and magnetic field intensity, as well as buffer ionic strength and pH. Bead velocities of up to 1 mm s<sup>â 1</sup> (0.5 µL min<sup>â 1</sup>) were observed in buffered solutions using a 0.4 T NdFeB permanent magnet, at an applied current density of 4000 A m<sup>â 2</sup>. This pump is intended for transport of electrolyte solutions having a relatively high ionic strength (0.5â 1 M) in a DC magnetic field environment. The application of this pump for the study of biological samples in a miniaturized total analysis system (µTAS) with integrated NMR detection is foreseen. In the 7 T NMR environment, a minimum 16-fold increase in volumetric flow rate for a given applied current density is expected. |
Формат |
application.pdf |
Издатель |
Royal Society of Chemistry |
Название |
A high current density DC magnetohydrodynamic (MHD) micropump |
Тип |
research-article |
DOI |
10.1039/b417892k |
Electronic ISSN |
1473-0189 |
Print ISSN |
1473-0197 |
Журнал |
Lab on a Chip |
Том |
5 |
Первая страница |
466 |
Последняя страница |
471 |
Аффилиация |
Homsy Alexandra; Institute of Microtechnology, University of Neuchâtel |
Аффилиация |
KosterPresent address: Groningen Research Institute of Pharmacy, University of Groningen, The Netherlands. Sander; Institute of Microtechnology, University of Neuchâtel |
Аффилиация |
Eijkel Jan C. T.; MESA + Research Institute, University of Twente |
Аффилиация |
van den Berg Albert; MESA + Research Institute, University of Twente |
Аффилиация |
Lucklum F.; Institute of Microtechnology, University of Neuchâtel |
Аффилиация |
Verpoorte E.; Groningen Research Institute of Pharmacy, University of Groningen |
Аффилиация |
de Rooij Nico F.; Institute of Microtechnology, University of Neuchâtel |
Выпуск |
4 |
Библиографическая ссылка |
Laser, J. Micromech. Microeng., 2004, 14, R35 |
Библиографическая ссылка |
Ritchie, Philos. Trans. R. Soc. London, 1833, 123, 313 |
Библиографическая ссылка |
Jang, Sens. Actuators A, 2000, 80, 84 |
Библиографическая ссылка |
Bau, Sens. Actuators B, 2001, 79, 207 |
Библиографическая ссылка |
Zhong, Sens. Actuators A, 2002, 96, 59 |
Библиографическая ссылка |
Bau, Sens. Actuators B, 2003, 88, 205 |
Библиографическая ссылка |
Lemoff, Sens. Actuators B, 2000, 63, 178 |
Библиографическая ссылка |
West, Lab Chip, 2002, 2, 224 |
Библиографическая ссылка |
Eijkel, Sens. Actuators B, 2003, 92, 215 |
Библиографическая ссылка |
West, Sens. Actuators B, 2003, 96, 190 |
Библиографическая ссылка |
Xiang, Phys. Rev. E, 2003, 68, 16312 |
Библиографическая ссылка |
Massin, J. Magn. Reson., 2003, 164, 286 |
Библиографическая ссылка |
Gravesen, J. Microchech. Microeng., 1993, 3, 168 |
Библиографическая ссылка |
Raymond, Anal. Chem., 1994, 66, 2858 |
Библиографическая ссылка |
Nelson, J. Chomatogr., 1989, 480, 111 |
Библиографическая ссылка |
Garcia Campana, J. Microcolumn Separations, 1998, 10, 339 |
Библиографическая ссылка |
Behrens, J. Chem. Phys., 2001, 115, 6716 |