Автор |
A N Aliev |
Автор |
M Hortaçsu |
Автор |
J Kalayci |
Автор |
Y Nutku |
Дата выпуска |
1999-02-01 |
dc.description |
Physical properties of gravitational instantons which are derivable from minimal surfaces in three-dimensional Euclidean space are examined using the Newman-Penrose formalism for Euclidean signature. The gravitational instanton that corresponds to the helicoid minimal surface is investigated in detail. This is a metric of Bianchi type , or E(2), which admits a hidden symmetry due to the existence of a quadratic Killing tensor. It leads to a complete separation of variables in the Hamilton-Jacobi equation for geodesics, as well as in Laplace's equation for a massless scalar field. The scalar Green function can be obtained in closed form, which enables us to calculate the vacuum fluctuations of a massless scalar field in the background of this instanton. |
Формат |
application.pdf |
Издатель |
Institute of Physics Publishing |
Название |
Gravitational instantons from minimal surfaces |
Тип |
paper |
DOI |
10.1088/0264-9381/16/2/024 |
Electronic ISSN |
1361-6382 |
Print ISSN |
0264-9381 |
Журнал |
Classical and Quantum Gravity |
Том |
16 |
Первая страница |
631 |
Последняя страница |
642 |
Выпуск |
2 |