| Автор | A N Aliev |
| Автор | M Hortaçsu |
| Автор | J Kalayci |
| Автор | Y Nutku |
| Дата выпуска | 1999-02-01 |
| dc.description | Physical properties of gravitational instantons which are derivable from minimal surfaces in three-dimensional Euclidean space are examined using the Newman-Penrose formalism for Euclidean signature. The gravitational instanton that corresponds to the helicoid minimal surface is investigated in detail. This is a metric of Bianchi type , or E(2), which admits a hidden symmetry due to the existence of a quadratic Killing tensor. It leads to a complete separation of variables in the Hamilton-Jacobi equation for geodesics, as well as in Laplace's equation for a massless scalar field. The scalar Green function can be obtained in closed form, which enables us to calculate the vacuum fluctuations of a massless scalar field in the background of this instanton. |
| Формат | application.pdf |
| Издатель | Institute of Physics Publishing |
| Название | Gravitational instantons from minimal surfaces |
| Тип | paper |
| DOI | 10.1088/0264-9381/16/2/024 |
| Electronic ISSN | 1361-6382 |
| Print ISSN | 0264-9381 |
| Журнал | Classical and Quantum Gravity |
| Том | 16 |
| Первая страница | 631 |
| Последняя страница | 642 |
| Выпуск | 2 |