Exact eigenvalues of the Hamiltonian P<sup>2</sup>+A mod X mod <sup>nu </sup>
H Turschner; H Turschner; Theoretische Festkorperphys., Tech. Hochschule Darmstadt, Darmstadt, West Germany
Журнал:
Journal of Physics A: Mathematical and General
Дата:
1979-04-01
Аннотация:
The correspondence between operators on a Hilbert space and phase-space functions based upon symmetric ordering, introduced by Cahill and Glauber (1969) (Weyl correspondence) is used in the present paper to define (non-linear) unitary transformations for quantum systems with the help of canonical transformations, which are bijective, i.e. one-to-one onto. These unitary transformations can be used to determine exactly the energy eigenvalues of a large class of one-dimensional quantum systems. As an example the authors calculate the exact eigenvalues of the Hamiltonian H(X,P)=<sup>1</sup>/<sub>2m</sub>(P<sup>2</sup>+a<sup>1</sup>2( nu +2)/ mod X mod <sup>nu </sup>), a, nu >0.
310.1Кб