Автор |
H Turschner |
Дата выпуска |
1979-04-01 |
dc.description |
The correspondence between operators on a Hilbert space and phase-space functions based upon symmetric ordering, introduced by Cahill and Glauber (1969) (Weyl correspondence) is used in the present paper to define (non-linear) unitary transformations for quantum systems with the help of canonical transformations, which are bijective, i.e. one-to-one onto. These unitary transformations can be used to determine exactly the energy eigenvalues of a large class of one-dimensional quantum systems. As an example the authors calculate the exact eigenvalues of the Hamiltonian H(X,P)=<sup>1</sup>/<sub>2m</sub>(P<sup>2</sup>+a<sup>1</sup>2( nu +2)/ mod X mod <sup>nu </sup>), a, nu >0. |
Формат |
application.pdf |
Издатель |
Institute of Physics Publishing |
Название |
Exact eigenvalues of the Hamiltonian P<sup>2</sup>+A mod X mod <sup>nu </sup> |
Тип |
paper |
DOI |
10.1088/0305-4470/12/4/006 |
Print ISSN |
0305-4470 |
Журнал |
Journal of Physics A: Mathematical and General |
Том |
12 |
Первая страница |
451 |
Последняя страница |
457 |
Аффилиация |
H Turschner; Theoretische Festkorperphys., Tech. Hochschule Darmstadt, Darmstadt, West Germany |
Выпуск |
4 |