Spiralling self-avoiding walks: an exact solution
H W J Blote; H J Hilhorst; H W J Blote; Lab. voor Tech. Natuurkunde, Delft, Netherlands; H J Hilhorst; Lab. voor Tech. Natuurkunde, Delft, Netherlands
Журнал:
Journal of Physics A: Mathematical and General
Дата:
1984-02-21
Аннотация:
An exact solution is presented to a problem of spiralling self-avoiding walks on the square lattice recently proposed by Privman (1983). For N to infinity , the number of N-step spiral walks increases as c<sub>N</sub> approximately=2<sup>-2</sup>3<sup>-5/4</sup> pi N<sup>-7/4</sup> exp(2 pi (N/3)<sup>1/2</sup>), and their root-mean-square end-to-end distance behaves as R<sub>N</sub> approximately=<sup>1</sup>/<sub>2</sub> square root pi <sup>-1</sup>N<sup>1/2</sup> log N.
287.7Кб