Автор |
H W J Blote |
Автор |
H J Hilhorst |
Дата выпуска |
1984-02-21 |
dc.description |
An exact solution is presented to a problem of spiralling self-avoiding walks on the square lattice recently proposed by Privman (1983). For N to infinity , the number of N-step spiral walks increases as c<sub>N</sub> approximately=2<sup>-2</sup>3<sup>-5/4</sup> pi N<sup>-7/4</sup> exp(2 pi (N/3)<sup>1/2</sup>), and their root-mean-square end-to-end distance behaves as R<sub>N</sub> approximately=<sup>1</sup>/<sub>2</sub> square root pi <sup>-1</sup>N<sup>1/2</sup> log N. |
Формат |
application.pdf |
Издатель |
Institute of Physics Publishing |
Название |
Spiralling self-avoiding walks: an exact solution |
Тип |
lett |
DOI |
10.1088/0305-4470/17/3/004 |
Print ISSN |
0305-4470 |
Журнал |
Journal of Physics A: Mathematical and General |
Том |
17 |
Первая страница |
L111 |
Последняя страница |
L115 |
Аффилиация |
H W J Blote; Lab. voor Tech. Natuurkunde, Delft, Netherlands |
Аффилиация |
H J Hilhorst; Lab. voor Tech. Natuurkunde, Delft, Netherlands |
Выпуск |
3 |