On the intersections of A<sub>1</sub> subgroups in the exceptional simple Lie groups E<sub>6</sub>, E<sub>7</sub> and E<sub>8</sub>
J Patera; M A Rodriguez; M Zaoui; J Patera; Centre de Res. Math., Montreau Univ., Que., Canada; M A Rodriguez; Centre de Res. Math., Montreau Univ., Que., Canada; M Zaoui; Centre de Res. Math., Montreau Univ., Que., Canada
Журнал:
Journal of Physics A: Mathematical and General
Дата:
1990-12-21
Аннотация:
The authors determine reductions of irreducible representations of E<sub>6</sub>, E<sub>7</sub> and E<sub>8</sub> according to the chain of subgroups E<sub>k</sub>A<sub>1</sub>T<sub>k</sub>, k=6, 7, 8, for all A<sub>1</sub> subgroups of E<sub>k</sub>. Here A<sub>1</sub> is either SU(2) or O(3) and T<sub>6</sub>, T<sub>7</sub>, T<sub>8</sub> are respectively the tetrahedral, octahedral and icosahedral groups. The result is the list of coinciding branching rules for E<sub>k</sub>T<sub>k</sub> proceeding via different subgroups A<sub>1</sub>.
566.0Кб