Автор |
J Patera |
Автор |
M A Rodriguez |
Автор |
M Zaoui |
Дата выпуска |
1990-12-21 |
dc.description |
The authors determine reductions of irreducible representations of E<sub>6</sub>, E<sub>7</sub> and E<sub>8</sub> according to the chain of subgroups E<sub>k</sub>A<sub>1</sub>T<sub>k</sub>, k=6, 7, 8, for all A<sub>1</sub> subgroups of E<sub>k</sub>. Here A<sub>1</sub> is either SU(2) or O(3) and T<sub>6</sub>, T<sub>7</sub>, T<sub>8</sub> are respectively the tetrahedral, octahedral and icosahedral groups. The result is the list of coinciding branching rules for E<sub>k</sub>T<sub>k</sub> proceeding via different subgroups A<sub>1</sub>. |
Формат |
application.pdf |
Издатель |
Institute of Physics Publishing |
Название |
On the intersections of A<sub>1</sub> subgroups in the exceptional simple Lie groups E<sub>6</sub>, E<sub>7</sub> and E<sub>8</sub> |
Тип |
paper |
DOI |
10.1088/0305-4470/23/24/011 |
Print ISSN |
0305-4470 |
Журнал |
Journal of Physics A: Mathematical and General |
Том |
23 |
Первая страница |
5695 |
Последняя страница |
5705 |
Аффилиация |
J Patera; Centre de Res. Math., Montreau Univ., Que., Canada |
Аффилиация |
M A Rodriguez; Centre de Res. Math., Montreau Univ., Que., Canada |
Аффилиация |
M Zaoui; Centre de Res. Math., Montreau Univ., Que., Canada |
Выпуск |
24 |