Phase-induced atomic permutations in icosahedral quasicrystals are related to stellated polyhedra
Andreas Rüdinger; Hans-Rainer Trebin; Andreas Rüdinger; Institut für Theoretische und Angewandte Physik der Universität Stuttgart, Pfaffenwaldring 57, D-70550 Stuttgart, Germany; Hans-Rainer Trebin; Institut für Theoretische und Angewandte Physik der Universität Stuttgart, Pfaffenwaldring 57, D-70550 Stuttgart, Germany
Журнал:
Journal of Physics A: Mathematical and General
Дата:
1996-08-07
Аннотация:
By certain variations of the phase of quasiperiodic tilings, vertices can be permuted and even transported to infinity in a diffusive way. In a preceding article, we have studied such a motion for the icosahedral Ammann - Kramer - Penrose tiling. The `quantum of diffusion' occurs in a triacontahedral cage, where atoms in sets of three and seven can be interchanged arbitrarily. Here we show that these kinetic processes can be represented by the `stellated polyhedra' and , respectively.
57.97Кб