Автор |
Andreas Rüdinger |
Автор |
Hans-Rainer Trebin |
Дата выпуска |
1996-08-07 |
dc.description |
By certain variations of the phase of quasiperiodic tilings, vertices can be permuted and even transported to infinity in a diffusive way. In a preceding article, we have studied such a motion for the icosahedral Ammann - Kramer - Penrose tiling. The `quantum of diffusion' occurs in a triacontahedral cage, where atoms in sets of three and seven can be interchanged arbitrarily. Here we show that these kinetic processes can be represented by the `stellated polyhedra' and , respectively. |
Формат |
application.pdf |
Издатель |
Institute of Physics Publishing |
Название |
Phase-induced atomic permutations in icosahedral quasicrystals are related to stellated polyhedra |
Тип |
note |
DOI |
10.1088/0305-4470/29/15/037 |
Print ISSN |
0305-4470 |
Журнал |
Journal of Physics A: Mathematical and General |
Том |
29 |
Первая страница |
4749 |
Последняя страница |
4751 |
Аффилиация |
Andreas Rüdinger; Institut für Theoretische und Angewandte Physik der Universität Stuttgart, Pfaffenwaldring 57, D-70550 Stuttgart, Germany |
Аффилиация |
Hans-Rainer Trebin; Institut für Theoretische und Angewandte Physik der Universität Stuttgart, Pfaffenwaldring 57, D-70550 Stuttgart, Germany |
Выпуск |
15 |