Aperiodic spin chain in the mean field approximation
Pierre Emmanuel Berche; Bertrand Berche; Pierre Emmanuel Berche; Laboratoire de Physique des Matériaux, Université Henri Poincaré, Nancy 1, BP 239, F-54506 Vandoeuvre les Nancy Cedex, France; Bertrand Berche; Laboratoire de Physique des Matériaux, Université Henri Poincaré, Nancy 1, BP 239, F-54506 Vandoeuvre les Nancy Cedex, France
Журнал:
Journal of Physics A: Mathematical and General
Дата:
1997-03-07
Аннотация:
Surface and bulk critical properties of an aperiodic spin chain are investigated in the framework of the phenomenological Ginzburg - Landau theory. According to Luck's criterion, the mean field correlation length exponent leads to a marginal behaviour when the wandering exponent of the sequence is . This is the case of the Fibonacci sequence that we consider here. We calculate the bulk and surface critical exponents for the magnetizations, critical isotherms, susceptibilities and specific heats. These exponents continuously vary with the amplitude of the perturbation. Hyperscaling relations are used in order to obtain an estimate of the upper critical dimension for this system.
233.6Кб