| Автор | Pierre Emmanuel Berche |
| Автор | Bertrand Berche |
| Дата выпуска | 1997-03-07 |
| dc.description | Surface and bulk critical properties of an aperiodic spin chain are investigated in the framework of the phenomenological Ginzburg - Landau theory. According to Luck's criterion, the mean field correlation length exponent leads to a marginal behaviour when the wandering exponent of the sequence is . This is the case of the Fibonacci sequence that we consider here. We calculate the bulk and surface critical exponents for the magnetizations, critical isotherms, susceptibilities and specific heats. These exponents continuously vary with the amplitude of the perturbation. Hyperscaling relations are used in order to obtain an estimate of the upper critical dimension for this system. |
| Формат | application.pdf |
| Издатель | Institute of Physics Publishing |
| Название | Aperiodic spin chain in the mean field approximation |
| Тип | paper |
| DOI | 10.1088/0305-4470/30/5/007 |
| Print ISSN | 0305-4470 |
| Журнал | Journal of Physics A: Mathematical and General |
| Том | 30 |
| Первая страница | 1347 |
| Последняя страница | 1362 |
| Аффилиация | Pierre Emmanuel Berche; Laboratoire de Physique des Matériaux, Université Henri Poincaré, Nancy 1, BP 239, F-54506 Vandoeuvre les Nancy Cedex, France |
| Аффилиация | Bertrand Berche; Laboratoire de Physique des Matériaux, Université Henri Poincaré, Nancy 1, BP 239, F-54506 Vandoeuvre les Nancy Cedex, France |
| Выпуск | 5 |