Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Debin Huang
Автор Zengrong Liu
Дата выпуска 2000-01-01
dc.description In this paper, sufficiently smooth Hamiltonian systems with perturbations are considered. By combining a smooth version of the Kolmogorov-Arnold-Moser theorem and the theory of normally hyperbolic invariant manifolds, we show that under the conditions of nonresonance and nondegeneracy, most hyperbolic invariant tori and their stable and unstable manifolds survive smoothly under sufficiently smooth autonomous perturbation. This result can be generalized directly to the case of time-dependent quasi-periodic perturbations. Finally, an example from geometrical optics is used to illustrate our method.
Формат application.pdf
Издатель Institute of Physics Publishing
Название On the persistence of lower-dimensional invariant hyperbolic tori for smooth Hamiltonian systems
Тип paper
DOI 10.1088/0951-7715/13/1/309
Electronic ISSN 1361-6544
Print ISSN 0951-7715
Журнал Nonlinearity
Том 13
Первая страница 189
Последняя страница 202
Аффилиация Debin Huang; LNM, Institute of Mechanics, Academy of China, People's Republic of China; Mathematical Department, Shanghai University, Shanghai 201800, People's Republic of China
Аффилиация Zengrong Liu; LNM, Institute of Mechanics, Academy of China, People's Republic of China; Mathematical Department, Shanghai University, Shanghai 201800, People's Republic of China
Выпуск 1

Скрыть метаданые