Автор |
Gerth, Frank |
Дата выпуска |
1977 |
dc.description |
Let l be a rational prime, and let ℤ<sub>l</sub> denote the ring of l-adic integers. Let k<sub>0</sub> be a finite extension field of the rational numbers ℚ, and let K be a ℤ<sub>l</sub>-extension of k<sub>0</sub> (i.e., Gal (K/k<sub>0</sub>) is topologically isomorphic to the additive group of Z<sub>l</sub>). Let the intermediate fields be denoted as follows:where k<sub>n</sub>k<sub>0</sub> is a cyclic extension of degree l<sub>n</sub>, and Let A<sub>n</sub> denote the l-class group of k<sub>n</sub> (i.e., the Sylow l-subgroup of the ideal class group of k<sub>n</sub>). It is known that the order of A<sub>n</sub> is given by , with |
Формат |
application.pdf |
Издатель |
London Mathematical Society |
Копирайт |
Copyright © University College London 1977 |
Тема |
12A65: ALGEBRAIC NUMBER THEORY; FIELD THEORY AND POLYNOMIALS; Algebraic number theory; Classfield theory |
Название |
Structure of l-class groups of certain number fields and ℤ<sub>l</sub>-extensions |
Тип |
research-article |
DOI |
10.1112/S002557930000886X |
Electronic ISSN |
2041-7942 |
Print ISSN |
0025-5793 |
Журнал |
Mathematika |
Том |
24 |
Первая страница |
16 |
Последняя страница |
33 |
Аффилиация |
Gerth Frank; The Universtity of Texas |
Выпуск |
1 |