Автор |
Gandini, Pier Mario |
Автор |
Zucco, Andreana |
Дата выпуска |
1992 |
dc.description |
An upper bound for the “sausage catastrophe” of dense sphere packings in 4-space is given.A basic problem in the theory of finite packing is to determine, for a given positive integer k, the minimal volume of all convex bodies into which k translates of the unit ball B<sup>d</sup> of the Euclidean d-dimensional space E<sup>d</sup> can be packed ([5]). For d = 2 this problem was solved by Groemer ([6]). |
Формат |
application.pdf |
Издатель |
London Mathematical Society |
Копирайт |
Copyright © University College London 1992 |
Тема |
52C17: CONVEX AND DISCRETE GEOMETRY; Discrete geometry; Packing in n dimensions. |
Название |
On the sausage catastrophe in 4-space |
Тип |
research-article |
DOI |
10.1112/S0025579300015011 |
Electronic ISSN |
2041-7942 |
Print ISSN |
0025-5793 |
Журнал |
Mathematika |
Том |
39 |
Первая страница |
274 |
Последняя страница |
278 |
Аффилиация |
Gandini Pier Mario; Università di Torino |
Аффилиация |
Zucco Andreana; Università di Torino |
Выпуск |
2 |