Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Asiri Nanayakkara
Дата выпуска 2004-04-16
dc.description Classical motion of complex 1D non-Hermitian Hamiltonian systems is investigated analytically to identify periodic, unbounded and chaotic trajectories. Expressions for the Lyapunov exponent for 1D complex Hamiltonians are derived. Complex potentials and V<sub>2</sub>(x) = μx<sup>3</sup> are studied in detail and their Lyapunov exponents are obtained analytically. It was found that when μ is complex all the trajectories of V<sub>1</sub> are chaotic with Lyapunov exponent |Im(μ)| and most of the trajectories of V<sub>2</sub> are periodic when μ is pure imaginary. But for other complex values of μ trajectories of V<sub>2</sub> are non-periodic and show infinite oscillations. Unbounded neighbouring trajectories of V<sub>2</sub> show power-law divergence rather than exponential divergence as in the case of V<sub>1</sub>.
Формат application.pdf
Издатель Institute of Physics Publishing
Копирайт 2004 IOP Publishing Ltd
Название Classical trajectories of 1D complex non-Hermitian Hamiltonian systems
Тип paper
DOI 10.1088/0305-4470/37/15/002
Print ISSN 0305-4470
Журнал Journal of Physics A: Mathematical and General
Том 37
Первая страница 4321
Последняя страница 4334
Аффилиация Asiri Nanayakkara; Institute of Fundamental Studies, Hanthana Road, Kandy, Sri Lanka
Выпуск 15

Скрыть метаданые