Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Au-Yeung, Yik-Hoi
Автор Yuen, Tai-Kwok
Дата выпуска 1974
dc.description We denote by F the field R of real numbers, the field C of complex numbers or the skew-field H of real quaternions, and by F<sup>n</sup> an n-dimensional left vector space over F. If A is a matrix with elements in F, we denote by A* its conjugate transpose. In all three cases of F, an n × n matrix A is said to be hermitian (unitary resp.) if A = A* (AA*= identity matrix resp.). An n ×x n hermitian matrix A is said to be definite (semidefinite resp.) if uAu*vAv* ≥ 0 (uAu*vAv* ≧ 0 resp.) for all nonzero u and v in F<sup>n</sup>. If A and B are n × n hermitian matrices, then we say that A and B can be diagonalized simultaneously into blocks of size less than or equal to m (abbreviated to d. s. ≧ m) if there exists a nonsingular matrix U with elements in F such that UAU* = diag{A<sub>1</sub>,…, A<sub>k</sub>} and UBU* = diag{B<sub>1</sub>…, B<sub>k</sub>}, where, for each i = 1, …, k, A<sub>i</sub> and B<sub>k</sub> are of the same size and the size is ≧ m. In particular, if m = 1, then we say A and B can be diagonalized simultaneously (abbreviated to d. s.).
Формат application.pdf
Издатель Cambridge University Press
Копирайт Copyright © Glasgow Mathematical Journal Trust 1974
Название A characterization of the definiteness of a Hermitian matrix
Тип research-article
DOI 10.1017/S0017089500002019
Electronic ISSN 1469-509X
Print ISSN 0017-0895
Журнал Glasgow Mathematical Journal
Том 15
Первая страница 1
Последняя страница 4
Аффилиация Au-Yeung Yik-Hoi; University of Hong Kong
Аффилиация Yuen Tai-Kwok; University of Hong Kong
Выпуск 1

Скрыть метаданые