Автор |
Chen, Bang-Yen |
Дата выпуска |
2002 |
dc.description |
A unit speed curve \gamma =\gamma (s) in a Riemannian manifold N is called a circle if there exists a unit vector field Y(s) along \gamma and a positive constant k such that \nabla _s \gamma '(s)=k Y(s),\, \nabla _s Y(s)=-k \gamma '(s). The main purpose of this article is to investigate the fundamental relationships between circles, maximal tori in compact symmetric spaces, and immersions of finite type. |
Издатель |
Cambridge University Press |
Название |
Circles in compact homogeneous Riemannian spaces and immersions of finite type Dedicated to Professor Koichi Ogiue on the occasion of his sixtieth birthday. |
DOI |
10.1017/S0017089502010054 |
Electronic ISSN |
1469-509X |
Print ISSN |
0017-0895 |
Журнал |
Glasgow Mathematical Journal |
Том |
44 |
Первая страница |
93 |
Последняя страница |
102 |
Аффилиация |
Chen Bang-Yen; Michigan State University |
Выпуск |
1 |