Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Yost, David
Дата выпуска 1984
dc.description Let E be an ordered Banach space with closed positive cone C. A base for C is a convex subset K of C with the property that every non-zero element of C has a unique representation of the form λk with λ > 0 and k ∈ K. Let S be the absolutely convex hull of K. If the Minkowski functional of S coincides with the given norm on E, then E is called a base norm space. Then K is a closed face of the unit ball of E, and S contains the open unit ball of E. Base norm spaces were first defined by Ellis [5, p. 731], although the special case of dual Banach spaces had been studied earlier by Edwards [4].
Формат application.pdf
Издатель Cambridge University Press
Копирайт Copyright © Glasgow Mathematical Journal Trust 1984
Название A base norm space whose cone is not 1-generating
Тип research-article
DOI 10.1017/S0017089500005395
Electronic ISSN 1469-509X
Print ISSN 0017-0895
Журнал Glasgow Mathematical Journal
Том 25
Первая страница 35
Последняя страница 36
Аффилиация Yost David; La Trobe University
Выпуск 1

Скрыть метаданые