Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор van Huynh, Dinh
Автор Dung, Nguyen V.
Дата выпуска 1988
dc.description Throughout this paper we consider associative rings with identity and assume that all modules are unitary. As is well known, cyclic modules play an important role in ring theory. Many nice properties of rings can be characterized by their cyclic modules, even by their simple modules. See, for example, [2], [3], [6], [7], [13], [14], [15], [16], [18], [21]. One of the most important results in this direction is the result of Osofsky [14, Theorem] which says: a ring R is semisimple (i.e. right artinian with zero Jacobson radical) if and only if every cyclic right R-module is injective. The other one is due to Vamos [18]: a ring R is right artinian if and only if every cyclic right R-module is finitely embedded.
Формат application.pdf
Издатель Cambridge University Press
Копирайт Copyright © Glasgow Mathematical Journal Trust 1988
Название A characterization of artinian rings
Тип research-article
DOI 10.1017/S0017089500007035
Electronic ISSN 1469-509X
Print ISSN 0017-0895
Журнал Glasgow Mathematical Journal
Том 30
Первая страница 67
Последняя страница 73
Аффилиация van Huynh Dinh; Institute of Mathematics
Аффилиация Dung Nguyen V.; Institute of Mathematics
Выпуск 1

Скрыть метаданые