Автор |
Göbel, Rüdiger |
Автор |
Paras, Agnes T. |
Дата выпуска |
2002 |
dc.description |
If R is a complete discrete valuation ring and M is a reduced, torsion-free R-module of rank \kappa, where \aleph_0 \leq \kappa < 2^ (\aleph_0), we show that M \prop\oplus_(\aleph_0) R \oplus C for some R-module C. As a consequence, it must be the case that M \prop M \oplus (\oplus{_\alpha}R), where \alpha \leq \aleph_0, and {\rm (End)_R}M/\rm (Fin)M has rank at least 2^ (\aleph_0), where Fin M denotes the set of endomorphisms of M with finite rank image. |
Издатель |
Cambridge University Press |
Название |
Splitting off free summands of torsion-free modules over complete DVRs This work is supported by Project No. G-545-173.06/97 of the German-Israeli Foundation for Scientific Research & Development. |
DOI |
10.1017/S0017089502020177 |
Electronic ISSN |
1469-509X |
Print ISSN |
0017-0895 |
Журнал |
Glasgow Mathematical Journal |
Том |
44 |
Первая страница |
349 |
Последняя страница |
351 |
Аффилиация |
Göbel Rüdiger; Universität Essen |
Аффилиация |
Paras Agnes T.; University of the Philippines |
Выпуск |
2 |