Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Gillespie, T. A.
Автор West, T. T.
Дата выпуска 1968
dc.description A Riesz operator is a bounded linear operator on a Banach space which possesses a Riesz spectral theory. These operators have been studied in [5] and [6]. In §2 of this paper we characterise Riesz operators in terms of their resolvent operators. In [6] it was shown that every Riesz operator on a Hilbert space can be decomposed into the sum of compact and quasi-nilpotent parts. §3 contains an example to show that these parts cannot, in general, be chosen to commute. In §4 the eigenset of a Riesz operator is defined. It is a sequence of quadruples each of which consists of an eigenvalue, the corresponding spectral projection, index and nilpotent part. This sequence satisfies certain obvious conditions, and the question arises of the existence of a Riesz operator which has such a sequence as its eigenset. We give an example of an eigenset which has no corresponding Riesz operator.
Формат application.pdf
Издатель Cambridge University Press
Копирайт Copyright © Glasgow Mathematical Journal Trust 1968
Название A characterisation and two examples of Riesz operators
Тип research-article
DOI 10.1017/S0017089500000379
Electronic ISSN 1469-509X
Print ISSN 0017-0895
Журнал Glasgow Mathematical Journal
Том 9
Первая страница 106
Последняя страница 110
Аффилиация Gillespie T. A.; Yale University and Edinburgh University
Аффилиация West T. T.; Yale University and Edinburgh University
Выпуск 2

Скрыть метаданые