Автор |
Cheng, Qing-Ming |
Дата выпуска |
2000 |
dc.description |
In this paper, we prove that if M^2 is a complete maximal spacelike surface of an anti-de Sitter space {\bf H}^{4}_{2}(c) with constant scalar curvature, then S=0, S={-10c\over 11}, S={-4c\over 3} or S=-2c, where S is the squared norm of the second fundamental form of M^{2}. Also(1) S=0 if and only if M^2 is the totally geodesic surface {\bf H}^2(c);(2) S={-4c\over 3} if and only if M^2 is the hyperbolic Veronese surface;(3) S=-2c if and only if M^2 is the hyperbolic cylinder of the totally geodesicsurface {\bf H}^{3}_{1}(c) of {\bf H}^{4}_{2}(c).1991 Mathematics Subject Classifaction 53C40, 53C42. |
Издатель |
Cambridge University Press |
Название |
Complete maximal spacelike surfaces in an anti-de Sitter space {\bf H}^{4}_{2}(c)Research partially supported by a Grant-in-Aid for Scientific Research from the Japanese Ministry of Education, Science and Culture and by a Grant-in-Aid for Scientific Research from Josai University. |
Electronic ISSN |
1469-509X |
Print ISSN |
0017-0895 |
Журнал |
Glasgow Mathematical Journal |
Том |
42 |
Первая страница |
139 |
Последняя страница |
156 |
Аффилиация |
Cheng Qing-Ming; Josai University |
Выпуск |
1 |