Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Birkenmeier, Gary F.
Автор Kim, Jin Yong
Автор Park, Jae Keol
Дата выпуска 1998
dc.description AbstractLet P be a prime ideal of a ring R, O(P) = {a ∊ R | aRs = 0, for some s ∊ R/P} | and Ō(P) = {x ∊ R | x<sup>n</sup> ∊ O(P), for some positive integer n}. Several authors have obtained sheaf representations of rings whose stalks are of the form R/O(P). Also in a commutative ring a minimal prime ideal has been characterized as a prime ideal P such that P= Ō(P). In this paper we derive various conditions which ensure that a prime ideal P = Ō(P). The property that P = Ō(P) is then used to obtain conditions which determine when R/O(P) has a unique minimal prime ideal. Various generalizations of O(P) and Ō(P) are considered. Examples are provided to illustrate and delimit our results.
Формат application.pdf
Издатель Cambridge University Press
Копирайт Copyright © Glasgow Mathematical Journal Trust 1998
Название A characterization of minimal prime ideals
Тип research-article
DOI 10.1017/S0017089500032547
Electronic ISSN 1469-509X
Print ISSN 0017-0895
Журнал Glasgow Mathematical Journal
Том 40
Первая страница 223
Последняя страница 236
Аффилиация Birkenmeier Gary F.; University of Southwestern Louisiana
Аффилиация Kim Jin Yong; Kyung Hee University
Аффилиация Park Jae Keol; Busan National University
Выпуск 2

Скрыть метаданые