Автор |
Birkenmeier, Gary F. |
Автор |
Kim, Jin Yong |
Автор |
Park, Jae Keol |
Дата выпуска |
1998 |
dc.description |
AbstractLet P be a prime ideal of a ring R, O(P) = {a ∊ R | aRs = 0, for some s ∊ R/P} | and Ō(P) = {x ∊ R | x<sup>n</sup> ∊ O(P), for some positive integer n}. Several authors have obtained sheaf representations of rings whose stalks are of the form R/O(P). Also in a commutative ring a minimal prime ideal has been characterized as a prime ideal P such that P= Ō(P). In this paper we derive various conditions which ensure that a prime ideal P = Ō(P). The property that P = Ō(P) is then used to obtain conditions which determine when R/O(P) has a unique minimal prime ideal. Various generalizations of O(P) and Ō(P) are considered. Examples are provided to illustrate and delimit our results. |
Формат |
application.pdf |
Издатель |
Cambridge University Press |
Копирайт |
Copyright © Glasgow Mathematical Journal Trust 1998 |
Название |
A characterization of minimal prime ideals |
Тип |
research-article |
DOI |
10.1017/S0017089500032547 |
Electronic ISSN |
1469-509X |
Print ISSN |
0017-0895 |
Журнал |
Glasgow Mathematical Journal |
Том |
40 |
Первая страница |
223 |
Последняя страница |
236 |
Аффилиация |
Birkenmeier Gary F.; University of Southwestern Louisiana |
Аффилиация |
Kim Jin Yong; Kyung Hee University |
Аффилиация |
Park Jae Keol; Busan National University |
Выпуск |
2 |