Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор HSU, CHIH-HUNG
Дата выпуска 1997
dc.description A well-known conjecture of E. Artin [1] states that for any integers $a \ne {\pm}1$ and $a$ is not a perfect square, there are infinitely many prime integers $p$ for which $a$ is a primitive root $({\bmod}\, p)$. An analogue of this conjecture for function fields was attacked successfully by Bilharz [2] in 1937 using the Riemann hypothesis for curves over finite fields (subsequently proved by A. Weil). The original conjecture of Artin remains open, though it was shown to be true if one assumes the Generalized Riemann hypothesis by Hooley [7]. In recent years, this conjecture of Artin has also been formulated and studied for elliptic curves over global fields instead of just ${\rm G}_m$ (the original case) (see [11]).
Издатель Cambridge University Press
Тема Kummer–Carlitz extensions
Тема Artinʼs conjecture
Название On Artinʼs conjecture for the Carlitz module
DOI 10.1023/A:1017932203320
Electronic ISSN 1570-5846
Print ISSN 0010-437X
Журнал Compositio Mathematica
Том 106
Первая страница 247
Последняя страница 266
Аффилиация HSU CHIH-HUNG; National Taiwan Normal University
Выпуск 3

Скрыть метаданые