Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Renaud, A.
Автор Cohen, G.
Дата выпуска 1997
dc.description To find a zero of a maximal monotone operator, an extension of the Auxiliary Problem Principle to nonsymmetric auxiliary operators is proposed. The main convergence result supposes a relationship between the main operator and the nonsymmetric component of the auxiliary operator. When applied to the particular case of convex-concave functions, this result implies the convergence of the parallel version of the Arrow-Hurwicz algorithm under the assumptions of Lipschitz and partial Dunn properties of the main operator. The latter is systematically enforced by partial regularization. In the strongly monotone case, it is shown that the convergence is linear in the average. Moreover, if the symmetric part of the auxiliary operator is linear, the Lipschitz property of the inverse suffices to ensure a linear convergence rate in the average.
Формат application.pdf
Издатель EDP Sciences
Копирайт © EDP Sciences, SMAI, 1997
Тема Auxiliary Problem Principle / variational inequalities with nonsymmetric operators / convergence of iterative algorithms / partial regularization / rate of convergence.
Название An Extension of the Auxiliary Problem Principle to Nonsymmetric Auxiliary Operators
Тип research-article
DOI 10.1051/cocv:1997109
Electronic ISSN 1262-3377
Print ISSN 1292-8119
Журнал ESAIM: Control, Optimisation and Calculus of Variations
Том 2
Первая страница 281
Последняя страница 306
Аффилиация Renaud A.; renaud@clr34el.der.edf.fr
Аффилиация Cohen G.; cohen@cas.ensmp.fr

Скрыть метаданые