Автор |
Belishev, Mikhail |
Автор |
Glasman, Aleksandr |
Дата выпуска |
2000 |
dc.description |
The paper deals with a boundary control problem for the Maxwell dynamical system in a bounbed domain Ω ⊂ R<sup>3</sup> . Let Ω<sup> T </sup> ⊂ Ω be the subdomain filled by waves at the moment T, T <sub>*</sub> the moment at which the waves fill the whole of Ω. The following effect occurs: for small enough T the system is approximately controllable in Ω<sup> T </sup> whereas for larger T < T<sub>*</sub> a lack of controllability is possible. The subspace of unreachable states is of finite dimension determined by topological characteristics of Ω<sup> T </sup>. |
Формат |
application.pdf |
Издатель |
EDP Sciences |
Копирайт |
© EDP Sciences, SMAI, 2000 |
Тема |
Maxwell's dynamical system |
Тема |
boundary control |
Тема |
unreachable states |
Тема |
topology of a domain. |
Название |
Boundary control of the Maxwell dynamical system: lack of controllability by topological reasons |
Тип |
research-article |
DOI |
10.1051/cocv:2000108 |
Electronic ISSN |
1262-3377 |
Print ISSN |
1292-8119 |
Журнал |
ESAIM: Control, Optimisation and Calculus of Variations |
Том |
5 |
Первая страница |
207 |
Последняя страница |
217 |
Аффилиация |
Belishev Mikhail; Saint-Petersburg Department of Steklov Mathematical Institute, Fontanka 27, Saint-Petersburg 191011, Russia; belishev@bel.pdmi.ras.ru. Supported by RFBR, grant 98-01-00314. |
Аффилиация |
Glasman Aleksandr; Saint-Petersburg State University, Saint-Petersburg, Russia. Supported by RFBR, grant 99-01-00107. |