Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Teel, Andrew R.
Автор Praly, Laurent
Дата выпуска 2000
dc.description We consider differential inclusions where a positive semidefinite function of the solutions satisfies a class-${\mathcal{KL}}$ estimate in terms of time and a second positive semidefinite function of the initial condition. We show that a smooth converse Lyapunov function, i.e., one whose derivative along solutions can be used to establish the class-${\mathcal{KL}}$ estimate, exists if and only if the class-${\mathcal{KL}}$ estimate is robust, i.e., it holds for a larger, perturbed differential inclusion. It remains an open question whether all class-${\mathcal{KL}}$ estimates are robust. One sufficient condition for robustness is that the original differential inclusion is locally Lipschitz. Another sufficient condition is that the two positive semidefinite functions agree and a backward completability condition holds. These special cases unify and generalize many results on converse Lyapunov theorems for differential equations and differential inclusions that have appeared in the literature.
Формат application.pdf
Издатель EDP Sciences
Копирайт © EDP Sciences, SMAI, 2000
Тема Differential inclusions
Тема Lyapunov functions
Тема uniform asymptotic stability.
Название A smooth Lyapunov function from a class-${\mathcal{KL}}$ estimate involving two positive semidefinite functions
Тип research-article
DOI 10.1051/cocv:2000113
Electronic ISSN 1262-3377
Print ISSN 1292-8119
Журнал ESAIM: Control, Optimisation and Calculus of Variations
Том 5
Первая страница 313
Последняя страница 367
Аффилиация Teel Andrew R.; ECE Department, University of California, Santa Barbara, CA 93106, U.S.A.; teel@ece.ucsb.edu.
Аффилиация Praly Laurent; Centre Automatique et Systèmes, École des Mines de Paris, 35 rue Saint Honoré, 77305 Fontainebleau Cedex, France; praly@cas.ensmp.fr.

Скрыть метаданые