Автор |
Teel, Andrew R. |
Автор |
Praly, Laurent |
Дата выпуска |
2000 |
dc.description |
We consider differential inclusions where a positive semidefinite function of the solutions satisfies a class-${\mathcal{KL}}$ estimate in terms of time and a second positive semidefinite function of the initial condition. We show that a smooth converse Lyapunov function, i.e., one whose derivative along solutions can be used to establish the class-${\mathcal{KL}}$ estimate, exists if and only if the class-${\mathcal{KL}}$ estimate is robust, i.e., it holds for a larger, perturbed differential inclusion. It remains an open question whether all class-${\mathcal{KL}}$ estimates are robust. One sufficient condition for robustness is that the original differential inclusion is locally Lipschitz. Another sufficient condition is that the two positive semidefinite functions agree and a backward completability condition holds. These special cases unify and generalize many results on converse Lyapunov theorems for differential equations and differential inclusions that have appeared in the literature. |
Формат |
application.pdf |
Издатель |
EDP Sciences |
Копирайт |
© EDP Sciences, SMAI, 2000 |
Тема |
Differential inclusions |
Тема |
Lyapunov functions |
Тема |
uniform asymptotic stability. |
Название |
A smooth Lyapunov function from a class-${\mathcal{KL}}$ estimate involving two positive semidefinite functions |
Тип |
research-article |
DOI |
10.1051/cocv:2000113 |
Electronic ISSN |
1262-3377 |
Print ISSN |
1292-8119 |
Журнал |
ESAIM: Control, Optimisation and Calculus of Variations |
Том |
5 |
Первая страница |
313 |
Последняя страница |
367 |
Аффилиация |
Teel Andrew R.; ECE Department, University of California, Santa Barbara, CA 93106, U.S.A.; teel@ece.ucsb.edu. |
Аффилиация |
Praly Laurent; Centre Automatique et Systèmes, École des Mines de Paris, 35 rue Saint Honoré, 77305 Fontainebleau Cedex, France; praly@cas.ensmp.fr. |