Автор |
Braides, Andrea |
Автор |
Fonseca, Irene |
Автор |
Leoni, Giovanni |
Дата выпуска |
2000 |
dc.description |
Integral representation of relaxed energies and of Γ-limits of functionals $$ (u,v)\mapsto \int_\Omega f( x,u(x),v(x))\,dx $$ are obtained when sequences of fields v may develop oscillations and are constrained to satisfy a system of first order linear partial differential equations. This framework includes the treatement of divergence-free fields, Maxwell's equations in micromagnetics, and curl-free fields. In the latter case classical relaxation theorems in W<sup>1,p</sup> , are recovered. |
Формат |
application.pdf |
Издатель |
EDP Sciences |
Копирайт |
© EDP Sciences, SMAI, 2000 |
Тема |
${\cal A}$-quasiconvexity |
Тема |
equi-integrability |
Тема |
Young measure |
Тема |
relaxation |
Тема |
Γ-convergence |
Тема |
homogenization. |
Название |
A-Quasiconvexity: Relaxation and Homogenization |
Тип |
research-article |
DOI |
10.1051/cocv:2000121 |
Electronic ISSN |
1262-3377 |
Print ISSN |
1292-8119 |
Журнал |
ESAIM: Control, Optimisation and Calculus of Variations |
Том |
5 |
Первая страница |
539 |
Последняя страница |
577 |
Аффилиация |
Braides Andrea; SISSA, Trieste, Italy; braides@sissa.it. |
Аффилиация |
Fonseca Irene; Department of MathematicalSciences, Carnegie-Mellon University, Pittsburgh, PA, U.S.A.; fonseca@andrew.cmu.edu. |
Аффилиация |
Leoni Giovanni; Dipartimento di Scienze e Tecnologie Avanzate, Università del Piemonte Orientale, Alessandria, Italy; leoni@al.unipmn.it. |