Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Khapalov, Alexander
Дата выпуска 1999
dc.description We consider the one dimensional semilinear reaction-diffusion equation, governed in Ω = (0,1) by controls, supported on any subinterval of (0, 1), which are the functions of time only. Using an asymptotic approach that we have previously introduced in [9], we show that such a system is approximately controllable at any time in both L <sup>2</sup>(0,1)( and C <sub>0</sub>[0,1], provided the nonlinear term f = f(x,t, u) grows at infinity no faster than certain power of log |u|. The latter depends on the regularity and structure of f (x, t, u) in x and t and the choice of the space for controllability. We also show that our results are well-posed in terms of the “actual steering” of the system at hand, even in the case when it admits non-unique solutions.
Формат application.pdf
Издатель EDP Sciences
Копирайт © EDP Sciences, SMAI, 1999
Тема The semilinear reaction-diffusion equation
Тема approximate controllability
Тема internal lumped control multiple solutions.
Название Approximate controllability and its well-posedness for the semilinear reaction-diffusion equation with internal lumped controls
Тип research-article
DOI 10.1051/cocv:1999104
Electronic ISSN 1262-3377
Print ISSN 1292-8119
Журнал ESAIM: Control, Optimisation and Calculus of Variations
Том 4
Первая страница 83
Последняя страница 98
Аффилиация Khapalov Alexander; Department of Pure and Applied Mathematics, Washington State University, Pullman, WA 99164-3113, USA; khapala@delta.math.wsu.edu.

Скрыть метаданые