Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Pasquignon, Denis
Дата выпуска 1999
dc.description We consider in $\mathbb{R}^2$ all curvature equation $\frac{\partial u}{\partial t}=|Du|G({\rm curv}(u))$ where G is a nondecreasing function and curv(u) is the curvature of the level line passing by x. These equations are invariant with respect to any contrast change u → g(u), with g nondecreasing. Consider the contrast invariant operator $T_t: u_o\to u(t)$. A Matheron theorem asserts that all contrast invariant operator T can be put in a form $(Tu)({\bf x}) = \inf_{B\in {\cal B}}\sup_{{\bf y}\in B} u({\bf x}+{\bf y})$. We show the asymptotic equivalence of both formulations. More precisely, we show that all curvature equations can be obtained as the iteration of Matheron operators $T_h^n$ where h → 0 and n → ∞ with nh=t.
Формат application.pdf
Издатель EDP Sciences
Копирайт © EDP Sciences, SMAI, 1999
Тема Viscosity solutions
Тема inf-sup scheme
Тема morphological filter.
Название Approximation of viscosity solution by morphological filters
Тип research-article
DOI 10.1051/cocv:1999112
Electronic ISSN 1262-3377
Print ISSN 1292-8119
Журнал ESAIM: Control, Optimisation and Calculus of Variations
Том 4
Первая страница 335
Последняя страница 359
Аффилиация Pasquignon Denis; CEREMADE, Université de Paris Dauphine, place de Lattre de Tassigny, 75775 Paris Cedex 16, France; pasquig@pi.ceremade.dauphine.fr.

Скрыть метаданые