Автор |
Pasquignon, Denis |
Дата выпуска |
1999 |
dc.description |
We consider in $\mathbb{R}^2$ all curvature equation $\frac{\partial u}{\partial t}=|Du|G({\rm curv}(u))$ where G is a nondecreasing function and curv(u) is the curvature of the level line passing by x. These equations are invariant with respect to any contrast change u → g(u), with g nondecreasing. Consider the contrast invariant operator $T_t: u_o\to u(t)$. A Matheron theorem asserts that all contrast invariant operator T can be put in a form $(Tu)({\bf x}) = \inf_{B\in {\cal B}}\sup_{{\bf y}\in B} u({\bf x}+{\bf y})$. We show the asymptotic equivalence of both formulations. More precisely, we show that all curvature equations can be obtained as the iteration of Matheron operators $T_h^n$ where h → 0 and n → ∞ with nh=t. |
Формат |
application.pdf |
Издатель |
EDP Sciences |
Копирайт |
© EDP Sciences, SMAI, 1999 |
Тема |
Viscosity solutions |
Тема |
inf-sup scheme |
Тема |
morphological filter. |
Название |
Approximation of viscosity solution by morphological filters |
Тип |
research-article |
DOI |
10.1051/cocv:1999112 |
Electronic ISSN |
1262-3377 |
Print ISSN |
1292-8119 |
Журнал |
ESAIM: Control, Optimisation and Calculus of Variations |
Том |
4 |
Первая страница |
335 |
Последняя страница |
359 |
Аффилиация |
Pasquignon Denis; CEREMADE, Université de Paris Dauphine, place de Lattre de Tassigny, 75775 Paris Cedex 16, France; pasquig@pi.ceremade.dauphine.fr. |