Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Rouquès, Jean-Philippe
Дата выпуска 1997
dc.description Consider a one dimensional nonlinear reaction-diffusion equation (KPP equation) with non-homogeneous second order term, discontinuous initial condition and small parameter. For points ahead of the Freidlin-KPP front, the solution tends to 0 and we obtain sharp asymptotics (i.e. non logarithmic). Our study follows the work of Ben Arous and Rouault who solved this problem in the homogeneous case. Our proof is probabilistic, and is based on the Feynman-Kac formula and the large deviation principle satisfied by the related diffusions. We use the Laplace method on Wiener space. The main difficulties come from the nonlinearity and the possibility for the endpoint of the optimal path to lie on the boundary of the support of the initial condition.
Формат application.pdf
Издатель EDP Sciences
Копирайт © EDP Sciences, SMAI, 1997
Тема Generalized KPP equation / Feynman-Kac formula / diffusion / large deviations / Laplace method / stochastic Taylor expansion / Skorokhod integral.
Название Laplace asymptotics for generalized K.P.P. equation
Тип research-article
DOI 10.1051/ps:1997109
Electronic ISSN 1262-3318
Print ISSN 1292-8100
Журнал ESAIM: Probability and Statistics
Том 1
Первая страница 225
Последняя страница 258
Аффилиация Rouquès Jean-Philippe; rouques@math.uvsq.fr

Скрыть метаданые