Автор |
Lawler, Gregory F. |
Дата выпуска |
1999 |
dc.description |
The growth exponent α for loop-erased or Laplacian random walk on the integer lattice is defined by saying that the expected time to reach the sphere of radius n is of order n<sup>α</sup> . We prove that in two dimensions, the growth exponent is strictly greater than one. The proof uses a known estimate on the third moment of the escape probability and an improvement on the discrete Beurling projection theorem. |
Формат |
application.pdf |
Издатель |
EDP Sciences |
Копирайт |
© EDP Sciences, SMAI, 1999 |
Тема |
loop-erased walk |
Тема |
Beurling projection theorem |
Название |
A Lower Bound on the Growth Exponent for Loop-Erased Random Walk in Two Dimensions |
Тип |
research-article |
DOI |
10.1051/ps:1999100 |
Electronic ISSN |
1262-3318 |
Print ISSN |
1292-8100 |
Журнал |
ESAIM: Probability and Statistics |
Том |
3 |
Первая страница |
1 |
Последняя страница |
21 |
Аффилиация |
Lawler Gregory F.; Department of Mathematics, Box 90320, Duke University Durham, NC 27708-0320, USA; jose@math.duke.edu. |