Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Lawler, Gregory F.
Дата выпуска 1999
dc.description The growth exponent α for loop-erased or Laplacian random walk on the integer lattice is defined by saying that the expected time to reach the sphere of radius n is of order n<sup>α</sup> . We prove that in two dimensions, the growth exponent is strictly greater than one. The proof uses a known estimate on the third moment of the escape probability and an improvement on the discrete Beurling projection theorem.
Формат application.pdf
Издатель EDP Sciences
Копирайт © EDP Sciences, SMAI, 1999
Тема loop-erased walk
Тема Beurling projection theorem
Название A Lower Bound on the Growth Exponent for Loop-Erased Random Walk in Two Dimensions
Тип research-article
DOI 10.1051/ps:1999100
Electronic ISSN 1262-3318
Print ISSN 1292-8100
Журнал ESAIM: Probability and Statistics
Том 3
Первая страница 1
Последняя страница 21
Аффилиация Lawler Gregory F.; Department of Mathematics, Box 90320, Duke University Durham, NC 27708-0320, USA; jose@math.duke.edu.

Скрыть метаданые