Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Gloter, Arnaud
Дата выпуска 2000
dc.description Let (X<sub>t</sub> ) be a diffusion on the interval (l,r) and Δ<sub>n</sub> a sequence of positive numbers tending to zero. We define J <sub> i </sub> as the integral between iΔ<sub>n</sub> and (i + 1)Δ<sub>n</sub> of X <sub> s </sub>. We give an approximation of the law of (J<sub>0</sub>,...,J<sub>n-1</sub>) by means of a Euler scheme expansion for the process (J<sub>i</sub> ). In some special cases, an approximation by an explicit Gaussian ARMA(1,1) process is obtained. When Δ<sub>n</sub> = n<sup>-1</sup> we deduce from this expansion estimators of the diffusion coefficient of X based on (J<sub>i</sub> ). These estimators are shown to be asymptotically mixed normal as n tends to infinity.
Формат application.pdf
Издатель EDP Sciences
Копирайт © EDP Sciences, SMAI, 2000
Тема Diffusion processes
Тема discrete time observation
Тема hidden markov model.
Название Discrete sampling of an integrated diffusion process and parameter estimation of the diffusion coefficient
Тип research-article
DOI 10.1051/ps:2000105
Electronic ISSN 1262-3318
Print ISSN 1292-8100
Журнал ESAIM: Probability and Statistics
Том 4
Первая страница 205
Последняя страница 227
Аффилиация Gloter Arnaud; Université de Marne-la-Vallée, Équipe d'Analyse et de Mathématiques Appliquées, 5 boulevard Descartes, Champs-sur-Marne, 77454 Marne-la-Vallée Cedex 2, France; e-mail: gloter@math.univ-mlv.fr

Скрыть метаданые