Автор |
Gloter, Arnaud |
Дата выпуска |
2000 |
dc.description |
Let (X<sub>t</sub> ) be a diffusion on the interval (l,r) and Δ<sub>n</sub> a sequence of positive numbers tending to zero. We define J <sub> i </sub> as the integral between iΔ<sub>n</sub> and (i + 1)Δ<sub>n</sub> of X <sub> s </sub>. We give an approximation of the law of (J<sub>0</sub>,...,J<sub>n-1</sub>) by means of a Euler scheme expansion for the process (J<sub>i</sub> ). In some special cases, an approximation by an explicit Gaussian ARMA(1,1) process is obtained. When Δ<sub>n</sub> = n<sup>-1</sup> we deduce from this expansion estimators of the diffusion coefficient of X based on (J<sub>i</sub> ). These estimators are shown to be asymptotically mixed normal as n tends to infinity. |
Формат |
application.pdf |
Издатель |
EDP Sciences |
Копирайт |
© EDP Sciences, SMAI, 2000 |
Тема |
Diffusion processes |
Тема |
discrete time observation |
Тема |
hidden markov model. |
Название |
Discrete sampling of an integrated diffusion process and parameter estimation of the diffusion coefficient |
Тип |
research-article |
DOI |
10.1051/ps:2000105 |
Electronic ISSN |
1262-3318 |
Print ISSN |
1292-8100 |
Журнал |
ESAIM: Probability and Statistics |
Том |
4 |
Первая страница |
205 |
Последняя страница |
227 |
Аффилиация |
Gloter Arnaud; Université de Marne-la-Vallée, Équipe d'Analyse et de Mathématiques Appliquées, 5 boulevard Descartes, Champs-sur-Marne, 77454 Marne-la-Vallée Cedex 2, France; e-mail: gloter@math.univ-mlv.fr |