Автор |
Lanzinger, Hartmut |
Дата выпуска |
1998 |
dc.description |
We prove a strong law of large numbers for moving averages of independent, identically distributed random variables with certain subexponential distributions. These random variables show a behavior that can be considered intermediate between the classical strong law and the Erdös-Rényi law. We further show that the difference from the classical behavior is due to the influence of extreme terms. |
Формат |
application.pdf |
Издатель |
EDP Sciences |
Копирайт |
© EDP Sciences, SMAI, 1998 |
Тема |
Law of large numbers / almost sure convergence / exponential inequalities. |
Название |
An almost sure limit theorem for moving averages of random variables between the strong law of large numbers and the Erdös-Rényi law |
Тип |
research-article |
DOI |
10.1051/ps:1998106 |
Electronic ISSN |
1262-3318 |
Print ISSN |
1292-8100 |
Журнал |
ESAIM: Probability and Statistics |
Том |
2 |
Первая страница |
163 |
Последняя страница |
183 |
Аффилиация |
Lanzinger Hartmut; (lanzinge@mathematik.uni-ulm.de) |