Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Kuznetsov, E. N
Автор Hall, W. B
Дата выпуска 1986
dc.description In the equations of the general theory of shells, the nonlinear terms accounting for membrane strains are accompanied by large coefficients (describing the extensional stiffness of the shell). Although formally infinitesimals of the second order, in the case of small but finite displacements these terms can be commensurate with, or even exceed in magnitude, the first-order terms. Disregarding such nonlinear terms can be debilitating to the linearized theory. For example, it will not reflect the fact that a plate or shell in bending prefers a deflection mode not accompanied by midsurface stretching (so-called isometric bending) and can switch to such a mode more or less abruptly, exhibiting the phenomenon of bending instabilityIn this study, bending instability and vibration of plates and shallow shells are investigated by simple analytical and numerical means, having in mind certain types of layered, sandwich, and truss-like structures.
Формат application.pdf
Издатель Oxford University Press
Копирайт Copyright Taylor and Francis Group, LLC
Название Bending instability and vibration of plates and shallow shells
Тип research-article
DOI 10.1080/02681118608806016
Electronic ISSN 1465-3389
Print ISSN 0268-1110
Журнал Dynamics and Stability of Systems
Том 1
Первая страница 236
Последняя страница 248
Аффилиация Kuznetsov, E. N; Department of General Engineering, University of Illinois at Urbana-Champaign
Аффилиация Hall, W. B; Department of General Engineering, University of Illinois at Urbana-Champaign
Выпуск 3
Библиографическая ссылка Chu, H. N and Herrman, G. 1956. Free flexural vibrations of rectangular elastic plates. ASME Journal of Applied Mechanics, 23(4)
Библиографическая ссылка Gerard, G. 1962. Introduction to Structural Stability, New York: University Press.
Библиографическая ссылка Kelvin, W and Tait, P. G. 1890. A Treatise on Natural Philosophy, Cambridge: University Press.
Библиографическая ссылка Kuznetsov, E. N. 1982. Edge effect in the bending of inextensible plates. ASME Journal of Applied Mechanics, 49(3)
Библиографическая ссылка Lee, S.S and Hsu, C.S. 1971. Stability of saddle-like deformed configurations of plates. International Journal of Non-Linear Mechanics, 6(2)
Библиографическая ссылка Leipholz, H. 1977. Direct Variational Methods and Eigenvalue Problems in Engineering, Gronigen: Noordhoff.
Библиографическая ссылка Leissa, A. W. 1969. Vibrations of Plates, (NASA SP-160)
Библиографическая ссылка Mikhlin, S. G. 1964. Variational Methods in Mathematical Physics, London: Macmillan.
Библиографическая ссылка Ramsey, H. 1985. A Rayleigh quotient for the instability of a rectangular plate with free edges. Journal de Mécanique Théorique et Appliquée, 4(2)

Скрыть метаданые