Автор |
Melbourne, Ian |
Дата выпуска |
1986 |
dc.description |
We analyse bifurcation problems with octahedral symmetry using results from singularity theory. For non-degenerate bifurcation problems equivariant with respect to the standard action of the octahedral group on we find three branches of symmetry-breaking bifurcation corresponding to the three maximal isotropy subgroups of the symmetry group with one-dimensional fixed-point subspaces. Locally, one of these branches is never asymptotically stable, but precisely one of the other branches is stable if and only if all three branches bifurcate supercritically.A singularity theory classification of these non-degenerate bifurcation problems yields two normal forms. One of these normal forms is of topological codimension one, and so a non-degenerate bifurcation problem need not be generic. Also, each normal form comprises a modal family. Hence the singularity theory classification is more delicate than a topological analysis. In particular, the modal parameters partition the space of non-degenerate bifurcation problems first according to branching and stability considerations as would be expected in a topological classification, but do not stop there. We discuss geometric interpretations of the delicate features of the singularity theory analysis. A recent result of Gaffney about high-order terms is used to simplify calculations. Further simplifications arise from a connectedness result. In particular, we do not have to consider an explicit change of coordinates. |
Формат |
application.pdf |
Издатель |
Oxford University Press |
Копирайт |
Copyright Taylor and Francis Group, LLC |
Название |
A singularity theory analysis of bifurcation problems with octahedral symmetry |
Тип |
research-article |
DOI |
10.1080/02681118608806020 |
Electronic ISSN |
1465-3389 |
Print ISSN |
0268-1110 |
Журнал |
Dynamics and Stability of Systems |
Том |
1 |
Первая страница |
293 |
Последняя страница |
321 |
Аффилиация |
Melbourne, Ian; Mathematics Institute, University of Warwick |
Выпуск |
4 |
Библиографическая ссылка |
Armbruster, D., Dangelmayr, G. and Giittinger, W. 1985. Imperfection sensitivity of interacting Hopf and steady-state bifurcations and their classification. Physica D, 16: 99–123. |
Библиографическая ссылка |
Ball, J. M. and Schaeffer, D. G. 1983. Bifurcation and stability of homogeneous equilibrium configurations of an elastic body under dead-load tractions. Mathematical Proceedings of the Cambridge Philosophical Society , 94: 315–339. |
Библиографическая ссылка |
Buzano, E., Geymonat, G. and Poston, T. 1985. Post-buckling behavior of a non-linearly hyperelastic thin rod with cross-section invariant under the dihedral group D<sub>n</sub> . Archive for Rational Mechanics and Analysis, 89: 307–388. |
Библиографическая ссылка |
Buzano, E. and Golubitsky, M. 1983. Bifurcation on the hexagonal lattice and the planar Bénard problem. Philosophical Transactions of the Royal Society A , 308: 617–667. |
Библиографическая ссылка |
Chossat, P. 1983. Solutions avec symétrie diédrale dans les problémes de bifurcation invariantes par symétrie spherique. Comptes Rendus de I' Académie des Sciences, Sèerie I, 297: 639–642. |
Библиографическая ссылка |
Cicogna, G. 1981. Lettere al Nuovo Cimento, 31: 600–602. |
Библиографическая ссылка |
Devonshire, A.F. 1949. Theory of barium titanate. Part I. Pnuosprucan Magazine, 40: 1040–1063. |
Библиографическая ссылка |
Gaffney, T. 1986. “Some new results in the classification theory of bifurcation problems.”. In Multiparameter Bifurcation Theory, Contemporary Mathematics 56 , Edited by: Golubitsky, M. and Guckenheimer, J. 97–118. Providence: American Mathematical Society. |
Библиографическая ссылка |
Golubitsky, M. 1983. The Bènard problem, symmetry and the lattice of isotropy subgroups. Bifurcation Theory, Mechanics and Physics, : 225–256. (Reidel, Dortrecht) |
Библиографическая ссылка |
Golubitsky, M. and Langford, W. F. 1981. Classification and unfoldings of degenerate Hopf bifurcations. Journal of Differential Equations , 41: 375–415. |
Библиографическая ссылка |
Golubitsky, M. and Schaeffer, D.G. 1979. A theory for imperfect bifurcation via singularity theory. Communications on Pure and Applied Mathematics, 32: 21–98. |
Библиографическая ссылка |
Golubitsky, M. and Schaeffer, D.G. 1979. Imperfect bifurcation in the presence of symmetry. Communications in Mathematical Physics, 67: 205–232. |
Библиографическая ссылка |
Golubitsky, M. and Schaeffer, D. G. 1982. Bifurcations with 0(3) symmetry including applications to the Bènard problem. Communications on Pure and Applied Mathematics, 35: 81–111. |
Библиографическая ссылка |
Golubitsky, M. and Schaeffer, D.G. 1984. “Singularities and Groups in Bifurcation Theory”. Vol. 1, New York: Springer. |
Библиографическая ссылка |
Golubitsky, M., Stewart, I. N. and Schaeffer, D. G. 1988. “Singularities and Groups in Bifurcation Theory”. Vol. 2, New York: Springer. to appear |
Библиографическая ссылка |
Ihrig, E. and Golubitsky, M. 1984. Pattern selection with 0(3) symmetry. Physica D. Nonlinear Phenomena , 13: 1–33. |
Библиографическая ссылка |
Keyfitz, B. L., Golubitsky, M., Gorman, M. and Chossat, P. 1986. The use of symmetry and bifurcation techniques in studying flame stability., Houston. Preprint |
Библиографическая ссылка |
Lauterbach, R. 1986. An example of symmetry-breaking with submaximal isotropy subgroup. Multiparameter Bifurcation Theory, Edited by: Golubitsky, M. and Guckenheimer, J. Vol. 56, Providence: American Mathematical Society. Mathematical Society |
Библиографическая ссылка |
Poénaru, V. 1976. “Singularités C∞ en Prèsence de Symètrie, Lecture Notes in Mathematics”. Vol. 510, Berlin: Springer. |
Библиографическая ссылка |
Rèdei, L. 1967. “Algebra”. Vol. 1, Pergamon Oxford. |
Библиографическая ссылка |
Schaeffer, D.G. 1983. “Topics in bifurcation theory.”. In Systems of Nonlinear Partial Differential Equations, Edited by: Ball, J. M. 219–262. Dordrecht: Reidel. |
Библиографическая ссылка |
Schwarz, G. 1975. Smooth functions invariant under the action of a compact Lie group. Topology , 14: 63–68. |
Библиографическая ссылка |
Vanderbauwhede, A. L. 1982. “Local bifurcation and symmetry. Research Notes in Mathematics 75”. Boston: Pitman. |