Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Melbourne, Ian
Дата выпуска 1986
dc.description We analyse bifurcation problems with octahedral symmetry using results from singularity theory. For non-degenerate bifurcation problems equivariant with respect to the standard action of the octahedral group on we find three branches of symmetry-breaking bifurcation corresponding to the three maximal isotropy subgroups of the symmetry group with one-dimensional fixed-point subspaces. Locally, one of these branches is never asymptotically stable, but precisely one of the other branches is stable if and only if all three branches bifurcate supercritically.A singularity theory classification of these non-degenerate bifurcation problems yields two normal forms. One of these normal forms is of topological codimension one, and so a non-degenerate bifurcation problem need not be generic. Also, each normal form comprises a modal family. Hence the singularity theory classification is more delicate than a topological analysis. In particular, the modal parameters partition the space of non-degenerate bifurcation problems first according to branching and stability considerations as would be expected in a topological classification, but do not stop there. We discuss geometric interpretations of the delicate features of the singularity theory analysis. A recent result of Gaffney about high-order terms is used to simplify calculations. Further simplifications arise from a connectedness result. In particular, we do not have to consider an explicit change of coordinates.
Формат application.pdf
Издатель Oxford University Press
Копирайт Copyright Taylor and Francis Group, LLC
Название A singularity theory analysis of bifurcation problems with octahedral symmetry
Тип research-article
DOI 10.1080/02681118608806020
Electronic ISSN 1465-3389
Print ISSN 0268-1110
Журнал Dynamics and Stability of Systems
Том 1
Первая страница 293
Последняя страница 321
Аффилиация Melbourne, Ian; Mathematics Institute, University of Warwick
Выпуск 4
Библиографическая ссылка Armbruster, D., Dangelmayr, G. and Giittinger, W. 1985. Imperfection sensitivity of interacting Hopf and steady-state bifurcations and their classification. Physica D, 16: 99–123.
Библиографическая ссылка Ball, J. M. and Schaeffer, D. G. 1983. Bifurcation and stability of homogeneous equilibrium configurations of an elastic body under dead-load tractions. Mathematical Proceedings of the Cambridge Philosophical Society , 94: 315–339.
Библиографическая ссылка Buzano, E., Geymonat, G. and Poston, T. 1985. Post-buckling behavior of a non-linearly hyperelastic thin rod with cross-section invariant under the dihedral group D<sub>n</sub> . Archive for Rational Mechanics and Analysis, 89: 307–388.
Библиографическая ссылка Buzano, E. and Golubitsky, M. 1983. Bifurcation on the hexagonal lattice and the planar Bénard problem. Philosophical Transactions of the Royal Society A , 308: 617–667.
Библиографическая ссылка Chossat, P. 1983. Solutions avec symétrie diédrale dans les problémes de bifurcation invariantes par symétrie spherique. Comptes Rendus de I' Académie des Sciences, Sèerie I, 297: 639–642.
Библиографическая ссылка Cicogna, G. 1981. Lettere al Nuovo Cimento, 31: 600–602.
Библиографическая ссылка Devonshire, A.F. 1949. Theory of barium titanate. Part I. Pnuosprucan Magazine, 40: 1040–1063.
Библиографическая ссылка Gaffney, T. 1986. “Some new results in the classification theory of bifurcation problems.”. In Multiparameter Bifurcation Theory, Contemporary Mathematics 56 , Edited by: Golubitsky, M. and Guckenheimer, J. 97–118. Providence: American Mathematical Society.
Библиографическая ссылка Golubitsky, M. 1983. The Bènard problem, symmetry and the lattice of isotropy subgroups. Bifurcation Theory, Mechanics and Physics, : 225–256. (Reidel, Dortrecht)
Библиографическая ссылка Golubitsky, M. and Langford, W. F. 1981. Classification and unfoldings of degenerate Hopf bifurcations. Journal of Differential Equations , 41: 375–415.
Библиографическая ссылка Golubitsky, M. and Schaeffer, D.G. 1979. A theory for imperfect bifurcation via singularity theory. Communications on Pure and Applied Mathematics, 32: 21–98.
Библиографическая ссылка Golubitsky, M. and Schaeffer, D.G. 1979. Imperfect bifurcation in the presence of symmetry. Communications in Mathematical Physics, 67: 205–232.
Библиографическая ссылка Golubitsky, M. and Schaeffer, D. G. 1982. Bifurcations with 0(3) symmetry including applications to the Bènard problem. Communications on Pure and Applied Mathematics, 35: 81–111.
Библиографическая ссылка Golubitsky, M. and Schaeffer, D.G. 1984. “Singularities and Groups in Bifurcation Theory”. Vol. 1, New York: Springer.
Библиографическая ссылка Golubitsky, M., Stewart, I. N. and Schaeffer, D. G. 1988. “Singularities and Groups in Bifurcation Theory”. Vol. 2, New York: Springer. to appear
Библиографическая ссылка Ihrig, E. and Golubitsky, M. 1984. Pattern selection with 0(3) symmetry. Physica D. Nonlinear Phenomena , 13: 1–33.
Библиографическая ссылка Keyfitz, B. L., Golubitsky, M., Gorman, M. and Chossat, P. 1986. The use of symmetry and bifurcation techniques in studying flame stability., Houston. Preprint
Библиографическая ссылка Lauterbach, R. 1986. An example of symmetry-breaking with submaximal isotropy subgroup. Multiparameter Bifurcation Theory, Edited by: Golubitsky, M. and Guckenheimer, J. Vol. 56, Providence: American Mathematical Society. Mathematical Society
Библиографическая ссылка Poénaru, V. 1976. “Singularités C∞ en Prèsence de Symètrie, Lecture Notes in Mathematics”. Vol. 510, Berlin: Springer.
Библиографическая ссылка Rèdei, L. 1967. “Algebra”. Vol. 1, Pergamon Oxford.
Библиографическая ссылка Schaeffer, D.G. 1983. “Topics in bifurcation theory.”. In Systems of Nonlinear Partial Differential Equations, Edited by: Ball, J. M. 219–262. Dordrecht: Reidel.
Библиографическая ссылка Schwarz, G. 1975. Smooth functions invariant under the action of a compact Lie group. Topology , 14: 63–68.
Библиографическая ссылка Vanderbauwhede, A. L. 1982. “Local bifurcation and symmetry. Research Notes in Mathematics 75”. Boston: Pitman.

Скрыть метаданые