Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Glendinning, Paul
Дата выпуска 1987
dc.description The local bifurcation structure of a codimension-two global bifurcation is described. Chaotic behaviour is generated by infinite sequences of homoclinic bifurcations in a neighbourhood of the codimension-two point and some metric properties of these sequences are given together with scaling results for the topological entropy of a related return map. The bifurcation described is applicable to asymmetric perturbations of the Lorenz equations.
Формат application.pdf
Издатель Oxford University Press
Копирайт Copyright Taylor and Francis Group, LLC
Название Asymmetric perturbations of Lorenz-like equations
Тип research-article
DOI 10.1080/02681118708806026
Electronic ISSN 1465-3389
Print ISSN 0268-1110
Журнал Dynamics and Stability of Systems
Том 2
Первая страница 43
Последняя страница 53
Аффилиация Glendinning, Paul; Mathematics Institute, University of Warwick
Выпуск 1
Библиографическая ссылка Afraimovich, V.S., Bykov, V.V. and Shil'nikov, L. P. 1982. On structurally unstable attracting limit sets of Lorenz attractor type. . Transactions of the Moscow Mathematical Society, 44: 153–216.
Библиографическая ссылка Afraimovich, V. S. and Shil'nikov, L. P. 1983. “On strange attractors and quasi-attractors”. In Nonlinear Dynamics and Turbulence, Edited by: Barenblatt, G. I. and Joseph, D. D. London: Pitman.
Библиографическая ссылка Block , L., Guckenheimer, J., Misiurewicz, M. and Young, L.S. 1980. “Periodic points and topological entropy of one dimensional maps”. In Global Theory of Dynamical Systems, Edited by: Nitecki, Z. and Robinson, C. Vol. 819, Berlin: Springer. Lecture Notes in Mathematics
Библиографическая ссылка Gambaudo, J. M, Glendinning, P., Rand, D and Tresser, C. 1986. “The gluing bifurcation III: stable foliations and periodic orbits”. Université de Nice.. Preprint
Библиографическая ссылка Glendinning, P. “Homoclinic bifurcations. dissertation”.
Библиографическая ссылка Glendinning, P. and Sparrow, C. “The locally eventually onto property of Lorenz maps”. University of Warwick.. Preprint
Библиографическая ссылка Lorenz, E.N. 1963. Deterministic non-periodic flows. Journal of the Atmospheric, 20: 130–141.
Библиографическая ссылка Lyubimov, Y. and Zaks, M.A. 1983. Two mechanisms of the transition to chaos in finite-dimensional models of convection. Physica, D9: 52–64.
Библиографическая ссылка Rand, D. 1978. The topological classification of Lorenz attractors. Mathematical Proceedings of the Cambridge Philosophical Society, 83: 451–460.
Библиографическая ссылка Robinson, C. 1980,1981. “Differentiability of the stable foliation for the model Lorenz equation. ”. In Dynamical Systems and Turbulence, Warwick, Edited by: Rand, D and Young, L. S. Vol. 898, Berlin: Springer. Lecture Notes in Mathematics
Библиографическая ссылка Sparrow, C. “Applied Mathematical Sciences”. In The Lorenz Equations: Bifurcations, Chaos and Strange Attractors
Библиографическая ссылка Tresser, C. 1984. About some theorems by L. P. Sil'nikov. Annals de l'Institut Henri Poincaré, 40: 441–461.
Библиографическая ссылка Williams, R.F. 1979. The Structure of Lorenz Attractors, Vol. 50, 73–100. Paris: Institut des Hautes Etudes Scientifiques. Publications Mathematiques

Скрыть метаданые