Автор |
Glendinning, Paul |
Дата выпуска |
1987 |
dc.description |
The local bifurcation structure of a codimension-two global bifurcation is described. Chaotic behaviour is generated by infinite sequences of homoclinic bifurcations in a neighbourhood of the codimension-two point and some metric properties of these sequences are given together with scaling results for the topological entropy of a related return map. The bifurcation described is applicable to asymmetric perturbations of the Lorenz equations. |
Формат |
application.pdf |
Издатель |
Oxford University Press |
Копирайт |
Copyright Taylor and Francis Group, LLC |
Название |
Asymmetric perturbations of Lorenz-like equations |
Тип |
research-article |
DOI |
10.1080/02681118708806026 |
Electronic ISSN |
1465-3389 |
Print ISSN |
0268-1110 |
Журнал |
Dynamics and Stability of Systems |
Том |
2 |
Первая страница |
43 |
Последняя страница |
53 |
Аффилиация |
Glendinning, Paul; Mathematics Institute, University of Warwick |
Выпуск |
1 |
Библиографическая ссылка |
Afraimovich, V.S., Bykov, V.V. and Shil'nikov, L. P. 1982. On structurally unstable attracting limit sets of Lorenz attractor type. . Transactions of the Moscow Mathematical Society, 44: 153–216. |
Библиографическая ссылка |
Afraimovich, V. S. and Shil'nikov, L. P. 1983. “On strange attractors and quasi-attractors”. In Nonlinear Dynamics and Turbulence, Edited by: Barenblatt, G. I. and Joseph, D. D. London: Pitman. |
Библиографическая ссылка |
Block , L., Guckenheimer, J., Misiurewicz, M. and Young, L.S. 1980. “Periodic points and topological entropy of one dimensional maps”. In Global Theory of Dynamical Systems, Edited by: Nitecki, Z. and Robinson, C. Vol. 819, Berlin: Springer. Lecture Notes in Mathematics |
Библиографическая ссылка |
Gambaudo, J. M, Glendinning, P., Rand, D and Tresser, C. 1986. “The gluing bifurcation III: stable foliations and periodic orbits”. Université de Nice.. Preprint |
Библиографическая ссылка |
Glendinning, P. “Homoclinic bifurcations. dissertation”. |
Библиографическая ссылка |
Glendinning, P. and Sparrow, C. “The locally eventually onto property of Lorenz maps”. University of Warwick.. Preprint |
Библиографическая ссылка |
Lorenz, E.N. 1963. Deterministic non-periodic flows. Journal of the Atmospheric, 20: 130–141. |
Библиографическая ссылка |
Lyubimov, Y. and Zaks, M.A. 1983. Two mechanisms of the transition to chaos in finite-dimensional models of convection. Physica, D9: 52–64. |
Библиографическая ссылка |
Rand, D. 1978. The topological classification of Lorenz attractors. Mathematical Proceedings of the Cambridge Philosophical Society, 83: 451–460. |
Библиографическая ссылка |
Robinson, C. 1980,1981. “Differentiability of the stable foliation for the model Lorenz equation. ”. In Dynamical Systems and Turbulence, Warwick, Edited by: Rand, D and Young, L. S. Vol. 898, Berlin: Springer. Lecture Notes in Mathematics |
Библиографическая ссылка |
Sparrow, C. “Applied Mathematical Sciences”. In The Lorenz Equations: Bifurcations, Chaos and Strange Attractors |
Библиографическая ссылка |
Tresser, C. 1984. About some theorems by L. P. Sil'nikov. Annals de l'Institut Henri Poincaré, 40: 441–461. |
Библиографическая ссылка |
Williams, R.F. 1979. The Structure of Lorenz Attractors, Vol. 50, 73–100. Paris: Institut des Hautes Etudes Scientifiques. Publications Mathematiques |