Автор |
Leung, A. Y. T. |
Дата выпуска |
1987 |
dc.description |
The dynamic stiffness method enables one to model an infinite number of natural modes by means of a finite number of degrees of freedom. The method has been extended to frame structures with uniform or non-uniform, straight or curved, damped or undamped beam members. An orthonormal condition is suggested here for the natural modes resulting from the dynamic stiffness method; modal analysis in the classical sense is then made possible. Modes corresponding to repeated natural frequencies are discussed in detail. An expansion theorem for expanding from a finite number of degrees of freedom by means of an infinite number of modes is validated by means of the frequency-dependent shape functions. Distributed modal participation factors are introduced for distributed excitations. |
Формат |
application.pdf |
Издатель |
Oxford University Press |
Копирайт |
Copyright Taylor and Francis Group, LLC |
Название |
Dynamic stiffness and response analysis |
Тип |
research-article |
DOI |
10.1080/02681118708806032 |
Electronic ISSN |
1465-3389 |
Print ISSN |
0268-1110 |
Журнал |
Dynamics and Stability of Systems |
Том |
2 |
Первая страница |
125 |
Последняя страница |
137 |
Аффилиация |
Leung, A. Y. T.; Department of Civil and Structural Engineering, University of Hong Kong |
Выпуск |
2 |
Библиографическая ссылка |
Banerjee, J. R. and Williams, F. W. 1985. Exact Bernoulli-Euler Dynamic stiffness matrix for a range of tapered beams. International Journal for Numerical Methods in Engineering, 21: 2289–2302. |
Библиографическая ссылка |
Henrych, J. 1981. The Dynamics of Arches and Frames, Amsterdam: Elsevier. |
Библиографическая ссылка |
Banerjee, J. R. and Williams, F. W. 1983. Concise equations and program for exact eigensolutions of plane frames including member shear. Advances in Engineering Software, 5: 137–141. |
Библиографическая ссылка |
Johnson, D. C. and Bishop, R. E. D. 1960. The Mechanics of Vibrations, Cambridge: University Press. |
Библиографическая ссылка |
Kolousek, V. 1973. Dynamics in Engineering Structures, London: Butterworth. |
Библиографическая ссылка |
Leung, Y. T. 1976. “Dynamics of structural vibrations by frequency dependent matrices and modal analysis. Ph.D. Thesis”. Birmingham: University of Aston. |
Библиографическая ссылка |
Leung, Y. T. 1978. An accurate method of dynamic condensation in structural analysis. International Journal for Numerical Methods in Engineering, 12: 1705–1716. |
Библиографическая ссылка |
Leung, Y. T. 1979. An accurate method of dynamic substructuring with simplified computation. International Journal for Numerical Methods in Engineering, 14: 1241–1256. |
Библиографическая ссылка |
Leung, Y. T. 1985. Dynamic stiffness method for exponentially varying harmonic excitation of continuous system. Journal of Sound and Vibration, 98: 337–347. |
Библиографическая ссылка |
Leung, Y. T. 1987. Inverse iteration for damped natural vibration. Journal of Sound and Vibration, 98 to appear |
Библиографическая ссылка |
Lundon, R. and Akesson, B. 1983. Damped second-order Rayleigh-Timoshenko beam vibration in space: an exact complex dynamic member stiffness matrix. International Journal for Numerical Methods in Engineering, 19: 431–449. |
Библиографическая ссылка |
Pearson, D. and Wittrick, W. H. 1986. An exact solution for the vibration of helical springs using a Bernoulli-Euler model. International Journal for Mechanical Science, 28: 83–96. |
Библиографическая ссылка |
Richards, T. H. and Leung, Y. T. 1977. An accurate method in structural vibration analysis. Journal of Sound and Vibration, 55: 363–376. |
Библиографическая ссылка |
Simpson, A. 1984. On the solution of S(ω)x = 0 by a Newtonian procedure. Journal of Sound and Vibration, 97: 153–164. |
Библиографическая ссылка |
Wittrick, W. H. and Williams, F. W. 1970. A general algorithm for computing natural frequencies of elastic structures. Quarterly Journal of Mechanics and Applied Mathematics, 24: 263–284. |