Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Leung, A. Y. T.
Дата выпуска 1987
dc.description The dynamic stiffness method enables one to model an infinite number of natural modes by means of a finite number of degrees of freedom. The method has been extended to frame structures with uniform or non-uniform, straight or curved, damped or undamped beam members. An orthonormal condition is suggested here for the natural modes resulting from the dynamic stiffness method; modal analysis in the classical sense is then made possible. Modes corresponding to repeated natural frequencies are discussed in detail. An expansion theorem for expanding from a finite number of degrees of freedom by means of an infinite number of modes is validated by means of the frequency-dependent shape functions. Distributed modal participation factors are introduced for distributed excitations.
Формат application.pdf
Издатель Oxford University Press
Копирайт Copyright Taylor and Francis Group, LLC
Название Dynamic stiffness and response analysis
Тип research-article
DOI 10.1080/02681118708806032
Electronic ISSN 1465-3389
Print ISSN 0268-1110
Журнал Dynamics and Stability of Systems
Том 2
Первая страница 125
Последняя страница 137
Аффилиация Leung, A. Y. T.; Department of Civil and Structural Engineering, University of Hong Kong
Выпуск 2
Библиографическая ссылка Banerjee, J. R. and Williams, F. W. 1985. Exact Bernoulli-Euler Dynamic stiffness matrix for a range of tapered beams. International Journal for Numerical Methods in Engineering, 21: 2289–2302.
Библиографическая ссылка Henrych, J. 1981. The Dynamics of Arches and Frames, Amsterdam: Elsevier.
Библиографическая ссылка Banerjee, J. R. and Williams, F. W. 1983. Concise equations and program for exact eigensolutions of plane frames including member shear. Advances in Engineering Software, 5: 137–141.
Библиографическая ссылка Johnson, D. C. and Bishop, R. E. D. 1960. The Mechanics of Vibrations, Cambridge: University Press.
Библиографическая ссылка Kolousek, V. 1973. Dynamics in Engineering Structures, London: Butterworth.
Библиографическая ссылка Leung, Y. T. 1976. “Dynamics of structural vibrations by frequency dependent matrices and modal analysis. Ph.D. Thesis”. Birmingham: University of Aston.
Библиографическая ссылка Leung, Y. T. 1978. An accurate method of dynamic condensation in structural analysis. International Journal for Numerical Methods in Engineering, 12: 1705–1716.
Библиографическая ссылка Leung, Y. T. 1979. An accurate method of dynamic substructuring with simplified computation. International Journal for Numerical Methods in Engineering, 14: 1241–1256.
Библиографическая ссылка Leung, Y. T. 1985. Dynamic stiffness method for exponentially varying harmonic excitation of continuous system. Journal of Sound and Vibration, 98: 337–347.
Библиографическая ссылка Leung, Y. T. 1987. Inverse iteration for damped natural vibration. Journal of Sound and Vibration, 98 to appear
Библиографическая ссылка Lundon, R. and Akesson, B. 1983. Damped second-order Rayleigh-Timoshenko beam vibration in space: an exact complex dynamic member stiffness matrix. International Journal for Numerical Methods in Engineering, 19: 431–449.
Библиографическая ссылка Pearson, D. and Wittrick, W. H. 1986. An exact solution for the vibration of helical springs using a Bernoulli-Euler model. International Journal for Mechanical Science, 28: 83–96.
Библиографическая ссылка Richards, T. H. and Leung, Y. T. 1977. An accurate method in structural vibration analysis. Journal of Sound and Vibration, 55: 363–376.
Библиографическая ссылка Simpson, A. 1984. On the solution of S(ω)x = 0 by a Newtonian procedure. Journal of Sound and Vibration, 97: 153–164.
Библиографическая ссылка Wittrick, W. H. and Williams, F. W. 1970. A general algorithm for computing natural frequencies of elastic structures. Quarterly Journal of Mechanics and Applied Mathematics, 24: 263–284.

Скрыть метаданые