Автор |
Smith, Peter |
Автор |
Davenport, Neil M. |
Дата выпуска |
1988 |
dc.description |
A perturbation method is developed for detecting homoclinic connections for the unstable Periodic solution of Duffing's equation with negative linear restoring term. The technique involves a mixture of averaging and singular perturbation methods. Each saddle connection implies a homoclinic point, and the initial bifurcation value of the forcing amplitude is given by the same formula as that obtained by Melnikov's method. The method has also been extended to include an investigation of double loop and transverse saddle connections. Conditions have also been obtained for certain large-amplitude oscillations which are known to occur for this system. The results are illustrated by numerical results for manifolds and saddle connections. |
Формат |
application.pdf |
Издатель |
Oxford University Press |
Копирайт |
Copyright Taylor and Francis Group, LLC |
Название |
A perturbation method for saddle connections and homoclinic bifurcation in duffing's equation |
Тип |
research-article |
DOI |
10.1080/02681118808806036 |
Electronic ISSN |
1465-3389 |
Print ISSN |
0268-1110 |
Журнал |
Dynamics and Stability of Systems |
Том |
2 |
Первая страница |
167 |
Последняя страница |
182 |
Аффилиация |
Smith, Peter; Department of Mathematics, University of Keele |
Аффилиация |
Davenport, Neil M.; Department of Mathematics, University of Keele |
Выпуск |
3-4 |
Библиографическая ссылка |
Gradshteyn, I. S. and Ryzhik, I. M. 1965. Table of Integrals, Series and Products, New York: Academic Press. |
Библиографическая ссылка |
Greenspan, B. D. and Holmes, P. J. 1983. “Homoclinic orbits, subharmonics and global bifurcations in forced oscillations”. In Nonlinear Dynamics and Turbulence, Edited by: Barenblatt, G., looss, G and Joseph, D. D. Boston: Pitman. |
Библиографическая ссылка |
Guckenheimer, J. and Holmes, P. “Nonlinear Oscillations, Dynamical Systems and Bijurcanons of Vector Fields”. New York: Springer. |
Библиографическая ссылка |
Holmes, P. J. 1979. A nonlinear oscillator with a strange attractor. Philosophical Transactions of the Royal Society A, 292: 419–448. |
Библиографическая ссылка |
Holmes, P. J. 1980. Averaging and chaotic motions in forced oscillations. SIAM Journal on Applied Mathematics, 38: 65–80. |
Библиографическая ссылка |
Jordan, D. W. and Smith, P. “Nonlinear Ordinary Differential Equations”. Clarendon Press Oxford. |
Библиографическая ссылка |
Melnikov, V. K. 1963. On the stability of the center for time periodic perturbations. Transactions of the Moscow Mathematical Society, 12: 1–57. |
Библиографическая ссылка |
Nayfeh, A. H. 1981. Introduction to Perturbation Techniques, New York: Wiley. |
Библиографическая ссылка |
Thompson, J. M. T. and Stewart, H. B. 1986. Nonlinear Dynamics and Chaos, Chichester: Wiley. |
Библиографическая ссылка |
Ueda, Y. 1979. Randomly transitional phenomena in the system governed by Duffing's. Journal of Statistical Physics, 20: 181–196. |