Автор |
Papoulias, Fotis Andrea |
Дата выпуска |
1988 |
dc.description |
The problem of multiple equilibria in steady towing of a floating body is considered. The two coordinates of the towing point are the main bifurcation parameters. An approach to bifurcation of steady-state equilibria using singularity theory reveals all qualitatively different bifurcation diagrams that occur locally. It is shown that these bifurcation problems may be viewed as paths in the universal unfolding space of the cusp catastrophe. The organizing centre for the towing problem is the pitchfork singularity. Numerical calculations suggest that results obtained by singularity-theory techniques are valid globally. |
Формат |
application.pdf |
Издатель |
Oxford University Press |
Копирайт |
Copyright Taylor and Francis Group, LLC |
Название |
A qualitative and quantitative study of steady-state response of towed floating bodies |
Тип |
research-article |
DOI |
10.1080/02681118808806056 |
Electronic ISSN |
1465-3389 |
Print ISSN |
0268-1110 |
Журнал |
Dynamics and Stability of Systems |
Том |
3 |
Первая страница |
187 |
Последняя страница |
217 |
Аффилиация |
Papoulias, Fotis Andrea; Department of Naval Architecture and Marine Engineering, The University of Michigan |
Выпуск |
3-4 |
Библиографическая ссылка |
Arnol'd, V. I. 1976. Local normal forms of functions. Inventiones Mathematicae, 35: 87–109. |
Библиографическая ссылка |
Bernitsas, M. M. and Kekridis, N.S. 1985. Simulation and stability of ship towing. International Shipbuilding Progress, 32: 112–123. |
Библиографическая ссылка |
Chillingworth, D. The catastrophe of a buckling beam. Proceedings Warwick Symposium on Dynamical Systems. Edited by: Manning, A. Berlin: Springer. |
Библиографическая ссылка |
Dangelmayr, G. and Stewart, I. 1984. Classification and unfoldings of sequential bifurcations. Society for Industrial and Applied Mathematics Journal of Mathematical Analysis, 15: 423–445. |
Библиографическая ссылка |
Golubitsky, M. and Keyfitz, B. L. 1980. A qualitative study of the steady state solutions for a continuous flow stirred tank chemical reactor. Society for Industrial and Applied Mathematics Journal of Mathematical Analysis, 11: 316–339. |
Библиографическая ссылка |
Golubitsky, M. and Schaeffer, D. 1979. A theory for imperfect bifurcation via singularlity theory. Communications on Pure and Applied Mathematics, 32: 21–98. |
Библиографическая ссылка |
Keyfitz, B. L. 1979. Classification of one-state-variable bifurcation problems up to codimension seven. Dynamics and Stability of Systems, 1986: 1–41. |
Библиографическая ссылка |
Papoulias, F. A. 1987. “Dynamic analysis of mooring systems”. Doctoral Dissertation, The University of Michigan.. |
Библиографическая ссылка |
Percell, P. B. and Brown, P. N. 1985. Finite determination of bifurcation problems. Society for Industrial and Applied Mathematics Journal of Mathematical Analysis, 16: 28–46. |
Библиографическая ссылка |
Schaeffer, D. General introduction to steady state bifurcation. Proceedings Warwick Symposium on Dynamical Systems and Turbulence. Edited by: Rand, D.A. and Young, L.-S. Berlin: Springer. |