Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Virgin, Lawrence N.
Дата выпуска 1989
dc.description An approach to studying the critical forcing parameters of an oscillator with a softening spring characteristic is developed. The harmonic response of the system is limited within a region of the phase plane, the boundary of which corresponds to a level of constant total energy for the underlying conservative system. This approach may be a useful conceptual aid in the understanding of the difficult problem of roll motion leading to capsize of a floating vessel.
Формат application.pdf
Издатель Oxford University Press
Копирайт Copyright Taylor and Francis Group, LLC
Название Approximate criterion for capsize based on deterministic dynamics
Тип research-article
DOI 10.1080/02681118908806062
Electronic ISSN 1465-3389
Print ISSN 0268-1110
Журнал Dynamics and Stability of Systems
Том 4
Первая страница 56
Последняя страница 70
Аффилиация Virgin, Lawrence N.; Duke University
Выпуск 1
Библиографическая ссылка Bishop, R. E. D. and Johnson, D. C. 1960. The Mechanics of Vibration, Cambridge: University Press.
Библиографическая ссылка Bishop, S. R., Virgin, L. N. and Leung, L. M. 1988. On the computation of domains of attraction during the dynamic modelling of oscillating systems. Applied Mathematical Modelling, 12: 503–516.
Библиографическая ссылка Caldeira-Seraiva, F. 1986. A stability criterion for ships using Lyapunov's method. Proceedings, International Conference The Safeship Project: Ship Stability and Safety, RINA. 1986.
Библиографическая ссылка Caldwell, J. B. and Yang, Y. S. 1986. Risk and reliability analysis applied to ship capsize; a preliminary study. Proceedings, International Conference. The Safeship Project .Ship Stability and Safety, RINA. 1986. .
Библиографическая ссылка Dowell, E. H. and Pezeshki, C. 1986. On the understanding of chaos in Duffing's equation including a comparison with experiment. Journal of Applied Mechanics, 53: 5–7.
Библиографическая ссылка 1985. Nonlinear Oscillations in Physical Systems, New York, Princeton: McGraw-Hill. reprinted University Press
Библиографическая ссылка Holmes, P. J. and Rand, D. A. 1976. The bifurcations of Duffiing's equation:An application of catastrophe theory. Journal of Sound and Vibration, 42: 237–253.
Библиографическая ссылка Jordan, D. W. and Smith, P. 1977. Nonlinear Ordinary Differential Equations, Oxford: Clarendon Press.
Библиографическая ссылка Kuo, C. and Odabasi, A. Y. 1975. Application of dynamic systems approach to ship and ocean vehicle stability. Proceedingsy International Conference on Stability of Ships and Ocean Vehicles, Strathclyde. 1975.
Библиографическая ссылка Moon, F. C. 1987. Chaotic Vibrations, New York: John Wiley.
Библиографическая ссылка Oskan, I. R. 1981. On the uniform boundedness of a nonlinear system. Mechanics Research Communications, 8: 67–82.
Библиографическая ссылка Poston, T. and Stewart, I. N. 1978. Catastrophe Theory and its Applications, London: Pitman.
Библиографическая ссылка Roberts, J. B. and Standing, R. G. A probabilistic model of ship roll motions for stability assessment. Proceedings, International Conference. The Safeship Project: Ship Stability and Safety RINA.
Библиографическая ссылка Stoker, J. J. 1950. Nonlinear Vibrations, New York: Interscience.
Библиографическая ссылка Thompson, J. M. T., Bishop, S. R. and Leung, L. M. 1987. Fractal basins and chaotic bifurcations prior to escape from a potential well. Physics Letters, A 121: 116–120.
Библиографическая ссылка Thompson, J. M. T. and Stewart, H. B. 1986. Nonlinear Dynamics and Chaos, London: John Wiley.
Библиографическая ссылка Thomson, W. T. 1981. Theory of Vibration with Applications, Englewood Cliffs: Prentice-Hall.
Библиографическая ссылка Tondl, A. and Schmidt, G. 1986. Non-Linear Vibrations, Cambridge: University Press.
Библиографическая ссылка Virgin, L. N. 1986. Parametric studies of the dynamic evolution through a fold. Journal of Sound and Vibration, 110: 99–109.
Библиографическая ссылка Virgin, L. N. 1987. The nonlinear rolling response of a vessel including chaotic motions leading to capsize in regular seas. Applied Ocean Research, 9: 89–95.
Библиографическая ссылка Virgin, L. N. 1988. On the harmonic response of an oscillator with unsymmetric restoring force. Journal of Sound and Vibration, 126: 157–165.
Библиографическая ссылка Wellicome, J. F. 1975. An analytical study of the mechanism of capsize. Proceedings, International Conference on Stability of Ships and Ocean Vehicles, Strathclyde. 1975.

Скрыть метаданые