Автор |
Virgin, Lawrence N. |
Дата выпуска |
1989 |
dc.description |
An approach to studying the critical forcing parameters of an oscillator with a softening spring characteristic is developed. The harmonic response of the system is limited within a region of the phase plane, the boundary of which corresponds to a level of constant total energy for the underlying conservative system. This approach may be a useful conceptual aid in the understanding of the difficult problem of roll motion leading to capsize of a floating vessel. |
Формат |
application.pdf |
Издатель |
Oxford University Press |
Копирайт |
Copyright Taylor and Francis Group, LLC |
Название |
Approximate criterion for capsize based on deterministic dynamics |
Тип |
research-article |
DOI |
10.1080/02681118908806062 |
Electronic ISSN |
1465-3389 |
Print ISSN |
0268-1110 |
Журнал |
Dynamics and Stability of Systems |
Том |
4 |
Первая страница |
56 |
Последняя страница |
70 |
Аффилиация |
Virgin, Lawrence N.; Duke University |
Выпуск |
1 |
Библиографическая ссылка |
Bishop, R. E. D. and Johnson, D. C. 1960. The Mechanics of Vibration, Cambridge: University Press. |
Библиографическая ссылка |
Bishop, S. R., Virgin, L. N. and Leung, L. M. 1988. On the computation of domains of attraction during the dynamic modelling of oscillating systems. Applied Mathematical Modelling, 12: 503–516. |
Библиографическая ссылка |
Caldeira-Seraiva, F. 1986. A stability criterion for ships using Lyapunov's method. Proceedings, International Conference The Safeship Project: Ship Stability and Safety, RINA. 1986. |
Библиографическая ссылка |
Caldwell, J. B. and Yang, Y. S. 1986. Risk and reliability analysis applied to ship capsize; a preliminary study. Proceedings, International Conference. The Safeship Project .Ship Stability and Safety, RINA. 1986. . |
Библиографическая ссылка |
Dowell, E. H. and Pezeshki, C. 1986. On the understanding of chaos in Duffing's equation including a comparison with experiment. Journal of Applied Mechanics, 53: 5–7. |
Библиографическая ссылка |
1985. Nonlinear Oscillations in Physical Systems, New York, Princeton: McGraw-Hill. reprinted University Press |
Библиографическая ссылка |
Holmes, P. J. and Rand, D. A. 1976. The bifurcations of Duffiing's equation:An application of catastrophe theory. Journal of Sound and Vibration, 42: 237–253. |
Библиографическая ссылка |
Jordan, D. W. and Smith, P. 1977. Nonlinear Ordinary Differential Equations, Oxford: Clarendon Press. |
Библиографическая ссылка |
Kuo, C. and Odabasi, A. Y. 1975. Application of dynamic systems approach to ship and ocean vehicle stability. Proceedingsy International Conference on Stability of Ships and Ocean Vehicles, Strathclyde. 1975. |
Библиографическая ссылка |
Moon, F. C. 1987. Chaotic Vibrations, New York: John Wiley. |
Библиографическая ссылка |
Oskan, I. R. 1981. On the uniform boundedness of a nonlinear system. Mechanics Research Communications, 8: 67–82. |
Библиографическая ссылка |
Poston, T. and Stewart, I. N. 1978. Catastrophe Theory and its Applications, London: Pitman. |
Библиографическая ссылка |
Roberts, J. B. and Standing, R. G. A probabilistic model of ship roll motions for stability assessment. Proceedings, International Conference. The Safeship Project: Ship Stability and Safety RINA. |
Библиографическая ссылка |
Stoker, J. J. 1950. Nonlinear Vibrations, New York: Interscience. |
Библиографическая ссылка |
Thompson, J. M. T., Bishop, S. R. and Leung, L. M. 1987. Fractal basins and chaotic bifurcations prior to escape from a potential well. Physics Letters, A 121: 116–120. |
Библиографическая ссылка |
Thompson, J. M. T. and Stewart, H. B. 1986. Nonlinear Dynamics and Chaos, London: John Wiley. |
Библиографическая ссылка |
Thomson, W. T. 1981. Theory of Vibration with Applications, Englewood Cliffs: Prentice-Hall. |
Библиографическая ссылка |
Tondl, A. and Schmidt, G. 1986. Non-Linear Vibrations, Cambridge: University Press. |
Библиографическая ссылка |
Virgin, L. N. 1986. Parametric studies of the dynamic evolution through a fold. Journal of Sound and Vibration, 110: 99–109. |
Библиографическая ссылка |
Virgin, L. N. 1987. The nonlinear rolling response of a vessel including chaotic motions leading to capsize in regular seas. Applied Ocean Research, 9: 89–95. |
Библиографическая ссылка |
Virgin, L. N. 1988. On the harmonic response of an oscillator with unsymmetric restoring force. Journal of Sound and Vibration, 126: 157–165. |
Библиографическая ссылка |
Wellicome, J. F. 1975. An analytical study of the mechanism of capsize. Proceedings, International Conference on Stability of Ships and Ocean Vehicles, Strathclyde. 1975. |