Автор |
Góra, P. |
Автор |
Boyarsky, A. |
Дата выпуска |
1990 |
dc.description |
For the family of transformations τ(r,b,x)=rxe<sup>-bx</sup> which models the Poincaré sections of the Belousov-Zhabotinski reaction we prove that there is an uncountable set A such that for each τξA,τ(r,b,˙) has an absolutely continuous invariant measure. We also approximate the density of this measure and thereby the Lyapunov exponent of τ(r,b,˙) .This is accomplished by proving that τ(r,b,˙) is conjugate, via an absolutely continuous homeomorphism, to a transormation T, where T<sup>x</sup> is piecewise expanding, for some integers |
Формат |
application.pdf |
Издатель |
Oxford University Press |
Копирайт |
Copyright Taylor and Francis Group, LLC |
Название |
Absolutely continuous invariant measures for the family of maps x → rxe<sup>-bx</sup> with application to the Belousov-Zhabotinski reaction |
Тип |
research-article |
DOI |
10.1080/02681119008806086 |
Electronic ISSN |
1465-3389 |
Print ISSN |
0268-1110 |
Журнал |
Dynamics and Stability of Systems |
Том |
5 |
Первая страница |
65 |
Последняя страница |
81 |
Аффилиация |
Góra, P.; Department of Mathematics, Warsaw University |
Аффилиация |
Boyarsky, A.; Department of Mathematics, Concordia University |
Выпуск |
2 |
Библиографическая ссылка |
Blank, M. 1985. On the conjugacy of a certain class of homogeneous endomorphisms to the class of piecewise monotonic maps. Russian Mathematical Surveys, 40: 211–212. |
Библиографическая ссылка |
Epstein, I.R. 1983. Oscillations and chaos in chemical systems. Physica, D7: 47 |
Библиографическая ссылка |
Góra, P. 1989. Compactness of invariant densities for families of expanding, piecewise monotonic transformations. Canadian Journal of Mathematics, 41: 855–869. |
Библиографическая ссылка |
Góra, P, Boyarsky, A and Proppe, H. 1988. Constructive approximations to densities invariant under nonexpanding transformations. Journal of Statistical Physics, 51: 179–194. |
Библиографическая ссылка |
Hudson, J. L and Mankin, J. C. 1981. Chaos in the Belousov-Zhabotinski reaction.. Journal of Chemical Physics, 74: 6171 |
Библиографическая ссылка |
Jakobson, M. V. 1976. The properties of the one-parameter family of dynamical systems. xt'Axe''. Uspehi Matematiceskie Nauk, 31: 239–240. |
Библиографическая ссылка |
Keller, G. 1985. Generalized bounded variation and application to piecewise monotonic transformations. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandt Gebiete, 69: 461–478. |
Библиографическая ссылка |
Lasota, A. 1977. “Ergodic problems in biology ”. In Astérisque 50, 239–250. Paris: Societé Mathématique de France. |
Библиографическая ссылка |
Misiurewicz, M. 1981. “Absolutely continuous measures for certain maps of an interval. Publications Mathematiques”. Vol. 53, 17–53. Paris: Institut des Hautes Etudes Scientifiques. |
Библиографическая ссылка |
Nowicki, T. 1985. Symmetric S-unimodal mappings and positive Lyapunov exponents.. Ergodic Theory and Dynamic Systems, 4: 611–616. |
Библиографическая ссылка |
Roux, J. C. 1983. Experimental studies of bifurcations leading to chaos in the Belousov-Zhabotinski reaction. Physica, D7: 57 |
Библиографическая ссылка |
Roux, J. C, Rossi, A., Bachelart, S. and Vidal, C. 1981. Experimental observations of complex dynamical behaviour during a chemical reaction. Physica, D2: 395 |
Библиографическая ссылка |
Roux, J. C., Turner, J. S., McCormick, W.D. and Swinney, H. L. 1982. “Experimental observations of complex dynamical behaviour during a chemical reaction”. In Nonlinear Problems: Present and Future, Edited by: Bishop, A.R., Campbell, D.K. and Nicolaenko, B. Vol. 409, Amsterdam: North-Holland. |
Библиографическая ссылка |
Simoyi, R. H., Wolf, A. and Swinney, H. L. 1982. One dimensional dynamics in a multi-component chemical reaction. Physical Review Letters, 49: 245 |
Библиографическая ссылка |
Swinney, H.L. 1983. Observations of order and chaos in nonlinear systems. Physica, D7: 3–15. |
Библиографическая ссылка |
Szewc, B. 1984. The Perron-Frobenius operator in spaces of smooth functions. Ergodic Theory and Dynamic Systems, 4: 613–643. |
Библиографическая ссылка |
Turner, J. S., Roux, J. C., McCormick, W. D. and Swinney, H.L. 1981. Alternating periodic and chaotic regimes in a chemical reaction– experiment and theory. Physics Letters, A85: 9 |
Библиографическая ссылка |
Wolf, A. and Swift, J. 1984. “Progress in computing Lyapunov exponents from experimental data”. In Statistical Physics and Chaos in Fusion Plasmas, Edited by: Horton, C.W. and Reichl, L. Newyork: Wiley. |
Библиографическая ссылка |
Ziemian, K. 1985. Almost sure invariance principle for some maps of an interval. Ergodic Theory and Dynamic Systems, 5: 625–640. |