Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Góra, P.
Автор Boyarsky, A.
Дата выпуска 1990
dc.description For the family of transformations τ(r,b,x)=rxe<sup>-bx</sup> which models the Poincaré sections of the Belousov-Zhabotinski reaction we prove that there is an uncountable set A such that for each τξA,τ(r,b,˙) has an absolutely continuous invariant measure. We also approximate the density of this measure and thereby the Lyapunov exponent of τ(r,b,˙) .This is accomplished by proving that τ(r,b,˙) is conjugate, via an absolutely continuous homeomorphism, to a transormation T, where T<sup>x</sup> is piecewise expanding, for some integers
Формат application.pdf
Издатель Oxford University Press
Копирайт Copyright Taylor and Francis Group, LLC
Название Absolutely continuous invariant measures for the family of maps x → rxe<sup>-bx</sup> with application to the Belousov-Zhabotinski reaction
Тип research-article
DOI 10.1080/02681119008806086
Electronic ISSN 1465-3389
Print ISSN 0268-1110
Журнал Dynamics and Stability of Systems
Том 5
Первая страница 65
Последняя страница 81
Аффилиация Góra, P.; Department of Mathematics, Warsaw University
Аффилиация Boyarsky, A.; Department of Mathematics, Concordia University
Выпуск 2
Библиографическая ссылка Blank, M. 1985. On the conjugacy of a certain class of homogeneous endomorphisms to the class of piecewise monotonic maps. Russian Mathematical Surveys, 40: 211–212.
Библиографическая ссылка Epstein, I.R. 1983. Oscillations and chaos in chemical systems. Physica, D7: 47
Библиографическая ссылка Góra, P. 1989. Compactness of invariant densities for families of expanding, piecewise monotonic transformations. Canadian Journal of Mathematics, 41: 855–869.
Библиографическая ссылка Góra, P, Boyarsky, A and Proppe, H. 1988. Constructive approximations to densities invariant under nonexpanding transformations. Journal of Statistical Physics, 51: 179–194.
Библиографическая ссылка Hudson, J. L and Mankin, J. C. 1981. Chaos in the Belousov-Zhabotinski reaction.. Journal of Chemical Physics, 74: 6171
Библиографическая ссылка Jakobson, M. V. 1976. The properties of the one-parameter family of dynamical systems. xt'Axe''. Uspehi Matematiceskie Nauk, 31: 239–240.
Библиографическая ссылка Keller, G. 1985. Generalized bounded variation and application to piecewise monotonic transformations. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandt Gebiete, 69: 461–478.
Библиографическая ссылка Lasota, A. 1977. “Ergodic problems in biology ”. In Astérisque 50, 239–250. Paris: Societé Mathématique de France.
Библиографическая ссылка Misiurewicz, M. 1981. “Absolutely continuous measures for certain maps of an interval. Publications Mathematiques”. Vol. 53, 17–53. Paris: Institut des Hautes Etudes Scientifiques.
Библиографическая ссылка Nowicki, T. 1985. Symmetric S-unimodal mappings and positive Lyapunov exponents.. Ergodic Theory and Dynamic Systems, 4: 611–616.
Библиографическая ссылка Roux, J. C. 1983. Experimental studies of bifurcations leading to chaos in the Belousov-Zhabotinski reaction. Physica, D7: 57
Библиографическая ссылка Roux, J. C, Rossi, A., Bachelart, S. and Vidal, C. 1981. Experimental observations of complex dynamical behaviour during a chemical reaction. Physica, D2: 395
Библиографическая ссылка Roux, J. C., Turner, J. S., McCormick, W.D. and Swinney, H. L. 1982. “Experimental observations of complex dynamical behaviour during a chemical reaction”. In Nonlinear Problems: Present and Future, Edited by: Bishop, A.R., Campbell, D.K. and Nicolaenko, B. Vol. 409, Amsterdam: North-Holland.
Библиографическая ссылка Simoyi, R. H., Wolf, A. and Swinney, H. L. 1982. One dimensional dynamics in a multi-component chemical reaction. Physical Review Letters, 49: 245
Библиографическая ссылка Swinney, H.L. 1983. Observations of order and chaos in nonlinear systems. Physica, D7: 3–15.
Библиографическая ссылка Szewc, B. 1984. The Perron-Frobenius operator in spaces of smooth functions. Ergodic Theory and Dynamic Systems, 4: 613–643.
Библиографическая ссылка Turner, J. S., Roux, J. C., McCormick, W. D. and Swinney, H.L. 1981. Alternating periodic and chaotic regimes in a chemical reaction– experiment and theory. Physics Letters, A85: 9
Библиографическая ссылка Wolf, A. and Swift, J. 1984. “Progress in computing Lyapunov exponents from experimental data”. In Statistical Physics and Chaos in Fusion Plasmas, Edited by: Horton, C.W. and Reichl, L. Newyork: Wiley.
Библиографическая ссылка Ziemian, K. 1985. Almost sure invariance principle for some maps of an interval. Ergodic Theory and Dynamic Systems, 5: 625–640.

Скрыть метаданые