Автор |
Billingham, J. |
Автор |
Needham, D. J |
Дата выпуска |
1991 |
dc.description |
The propagating reaction–diffusion waves that may develop in the isothermal, autocatalytic system A+2B→3B, from a local initial input of the autocatalyst B, are considered. We find that travelling-wave solutions exist for all propagation speeds . It is shown that the travelling-wave solution with minimum propagation speed, exhibits exponential decay in the concentration of the autocatalyst B ahead of the wavefront, whilst, for faster travelling waves, with , the autocatalyst concentration decays only algebraically. This difference in behaviour between the minimum-speed and faster-speed waves has implications concerning the selection of the long-time wave speed when such travelling waves are generated from an initial-value problem |
Формат |
application.pdf |
Издатель |
Oxford University Press |
Копирайт |
Copyright Taylor and Francis Group, LLC |
Название |
A note on the properties of a family of travelling-wave solutions arising in cubic autocatalysis |
Тип |
research-article |
DOI |
10.1080/02681119108806105 |
Electronic ISSN |
1465-3389 |
Print ISSN |
0268-1110 |
Журнал |
Dynamics and Stability of Systems |
Том |
6 |
Первая страница |
33 |
Последняя страница |
49 |
Аффилиация |
Billingham, J.; School of Mathematics, University of East Anglia |
Аффилиация |
Needham, D. J; School of Mathematics, University of East Anglia |
Выпуск |
1 |
Библиографическая ссылка |
Aris, R., Gray, P. and Scott, S. K. 1988. Modelling cubic autocatalysis by successive bimolecular steps. Chemical Engineering Science, 43: 207–211. |
Библиографическая ссылка |
Britton, N. F. 1986. Reaction–Diffusion Equations and their Applications to Biology, London: Academic Press. |
Библиографическая ссылка |
Dixon-Lewis, G. and Williams, D. J. 1977. “The oxidation of hydrogen and carbon monoxide”. In Comprehensive Chemical Kinetics, Edited by: Bamford, C. H and Tipper, C. F. H. Vol. 17, Amsterdam: Elsevier. |
Библиографическая ссылка |
Field, R. J. and Noyes, R. M. 1974. Oscillations in chemical systems. IV Limit cycle behaviour in a model of a real chemical reaction. Journal of Chemical Physics, 60: 1877–1884. |
Библиографическая ссылка |
Gowland, R. J. and Stedman, G. 1983. A novel moving boundary reaction involving hydroxylamine and nitric acid. Journal of the Chemical Society, Chemical Communications, 60: 1038–1039. |
Библиографическая ссылка |
Gray, P., Showalter, K. and Scott, S. K. 1987. Propagating reaction–diffusion fronts with cubic autocatalysis: The effects of reversibility. Journal de Chimie Physique, 84: 1329–1333. |
Библиографическая ссылка |
Guckenheimer, J. and Holmes, P. 1983. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, New York: Springer. |
Библиографическая ссылка |
Hanna, A., Saul, A. and Showalter, K. 1982. Detailed studies of propagating fronts in the iodate oxidation of arsenous acid. Journal of the American Chemical Society, 104: 3838–3844. |
Библиографическая ссылка |
Hirsch, M. N. and Smale, S. 1974. Differential Equations, Dynamical Systems and Linear Algebra, New York: Academic Press. |
Библиографическая ссылка |
Larson, D. A. 1978. Transient bounds and time-asymptotic behaviour of solutions to nonlinear equations of Fisher type. Society for Industrial and Applied Mathematics, Journal on Applied Mathematics, 34: 93–103. |
Библиографическая ссылка |
Merkin, J. H., Needham, D. J. and Scott, S. K. 1985. A simple model for sustained oscillations in isothermal branched-chain or autocatalytic reactions in a well stirred open system. Proceedings of the Royal Society, A398: 81–116. |
Библиографическая ссылка |
Murray, J. D. 1977. Lectures on Nonlinear Differential Equation Models in Biology, Oxford: Clarendon Press. |
Библиографическая ссылка |
Saul, A. and Showalter, K. 1984. “Propagating reaction-diffusion fronts”. In Oscillations and Travelling Waves in Chemical Systems, Edited by: Field, R. J. and Burger, M. New York: Wiley. |
Библиографическая ссылка |
Sel'kov, E. E. 1968. Self-oscillations in glycolysis, 1. A simple kinetic model. European Journal of Biochemistry, 4: 79–86. |
Библиографическая ссылка |
Voronkov, V. G. and Semenov, N. N. 1939. Zhurnal Fizicheskoi Khimii, 13 1695 |