Автор |
Hill, Andrew |
Автор |
Stewart, Ian |
Дата выпуска |
1991 |
dc.description |
We analyse the bifurcations of a general ordinary dififerential equation where is equivariant under an action of the group O(2) on. The equation represents the most general nonlinear local interaction of three O(2)-symmetric modes:a steady-state mode with mode-number k, and two periodic (Hopf) modes with mode-numbers l and m. The parameter λ is a bifurcation parameter, and α<sub>1</sub>, α<sub>2</sub>are unfolding parameters that split the individual modes apart. The system is assumed to be in Birkhoff normal form, so that f also commutes with an action of the 2-torus T<sup>2</sup>. We discuss the existence and stability of bifurcating branches and how these break the O(2) × T<sup>2</sup> symmetry.Depending on the precise mode-numbers k l m we find up to 31 symmetry classes of possible solutions including six that combine all three modes, and thus cannot be found in any 2-mode interaction. We also discuss the possible occurrence of Sacher-Naimark torus bifurcations, providing a further 10 solution types, and 'slow drift'bifurcations. This 10-dimensional system can occur generically in O(2)-symmetric bifurcation problems having two extra parameters, and in principle is applicable to a wide range of physical systems. The discussion here is motivated by the observed pattern formation in the Taylor–Couette system, the flow of a fluid contained between coaxial rotating cylinders. It arises by seeking a 'hidden organizing centre' that combines two previous mode-interaction models of this system: a 6-dimensional Hopf–steady-state model due to Chossat and looss (1985) and Golubitsky and Stewart (1986), and an 8-dimensional Hopf–Hopf model due to Chossat, Demay and looss (1987). We interpret the general results on the 10-dimensional system in the context of Taylor–Couette flow, giving schematic pictures of the associated flow patterns. The model incorporates almost all of the observed non-chaotic flows in the Taylor–Couette experiment into a single finite-dimensional dynamical system. It predicts the possible occur- rence of four new flow patterns (corresponding to four of the six possible solutions that combine all three modes). Theseform invariant 3-tori, and may be described as superimposed twisted vortices, superimposed wavy vortices, and two types of twisted wavy vortices. Possible torus bifurcations from states in the 10-dimensional model include various modulated spirals, three types of modulated twisted vortices, three types of modulated wavy vortices, modulated superimposed spirals, modulated interpenetrating spirals, modulated superimposed ribbons, and modulated interpenetrating ribbons. However, whether any of these new states and torus bifurcations can actually occur in Taylor–Couette flow at suitable parameter values, and if so whether they can occur stably, depend upon more detailed numerical calculations than we have performed |
Формат |
application.pdf |
Издатель |
Oxford University Press |
Копирайт |
Copyright Taylor and Francis Group, LLC |
Название |
3-mode Interactions with O(2) Symmetry and a Model for Taylor-Couette flow |
Тип |
research-article |
DOI |
10.1080/02681119108806121 |
Electronic ISSN |
1465-3389 |
Print ISSN |
0268-1110 |
Журнал |
Dynamics and Stability of Systems |
Том |
6 |
Первая страница |
267 |
Последняя страница |
339 |
Аффилиация |
Hill, Andrew; Nonlinear Systems Laboratory, Mathematics Institute, University of Warwick |
Аффилиация |
Stewart, Ian; Nonlinear Systems Laboratory, Mathematics Institute, University of Warwick |
Выпуск |
4 |
Библиографическая ссылка |
Ahlers, G., Dannell, D. S., Dominguez-Lerma, M. A. and Heinrichs, R. 1986. Wavenumber selection and Eckhaus instability in Couette–Taylor flow. . Physica, D23: 202–219. |
Библиографическая ссылка |
Andereck, C. D., Dickman, R. D. and Swinney, H. L. 1984. New flows in a circular Couette system with co-rotating cylinders. . The Physics of Fluids, 26: 1395–1401. |
Библиографическая ссылка |
Andereck, C. D. and Liu, S. S. 1986. Flow regimes in a circular Couette system with independently rotating cylinders. . Journal of Fluid Mechanics, 164: 155–183. |
Библиографическая ссылка |
Benjamin, T. B. 1978a. Bifurcation phenomena in steady flow of a viscous fluid. I. Theory. Proceedings of the Royal Society, A359 : 1–26. |
Библиографическая ссылка |
Benjamin, T. B. 1978b. Proceedings of the Royal Society, A359: 27–43. |
Библиографическая ссылка |
Chandrasekhar, S. 1961. Hydrodynamic and Hydromagnetic Stability , Oxford: University Press. |
Библиографическая ссылка |
Chossat, P. 1985. Interaction d'ondes rotaires dans le probleme de Couette–Taylor. Comptes Rendues Hebdomadaires des Seances de VAcademic des Sciences, Paris, I300: 251–254. |
Библиографическая ссылка |
Chossat, P. 1986. Bifurcation secondaire de solutions quasi-périodiques dans un probléme de bifurcation de Hopf invariant par symétrie O(2). Comptes Rendues Hebdomadaires des Séances de l'cademic des Sciences, Paris, I 302: 539–541. |
Библиографическая ссылка |
Chossat, P., Demay, Y. and looss, G. 1987. Interaction de modes azimutaux dans le probleme de Couette–Taylor. . Archive for Rational Mechanics and Analysis, 99: 213–248. |
Библиографическая ссылка |
Chossat, P. and Golubitsky, M. Hopf bifurcation in the presence of symmetry, center manifold and Liapunov–Schmidt reduction. Oscillation, Bifurcation and Chaos, CMS Conference Proceedings. pp.343–352. (ed. F. V. Atkinson, W. F. Langford and A. B. Mignarelli) |
Библиографическая ссылка |
Chossat, P. and Golubitsky, M. 1988a. Iterates of maps with symmetry. . SIAM Journal on Mathematical Analysis, 19: 1259–1270. |
Библиографическая ссылка |
Chossat, P. and Golubitsky, M. 1988b. Physica, D32: 423–436. |
Библиографическая ссылка |
Chossat, P., Golubitsky, M. and Keyfitz, B. L. 1987. Hopf-Hopf mode interactions with O(2) symmetry. . Dynamics and Stability of Systems, 1: 255–292. |
Библиографическая ссылка |
Chossat, P. and looss, G. 1985. Primary and secondary bifurcations in the Couette–Taylor problem. . Japanese Journal of Applied Mathematics, 2 : 37–68. |
Библиографическая ссылка |
Coles, D. 1965. Transition in circular Couette flow. . Journal of Fluid Mechanics, 93: 515–527. |
Библиографическая ссылка |
Crawford, J. D., Golubitsky, M. and Langford, W. F. 1988. Modulated rotating waves in O(2) mode interactions. . Dynamics and Stability of Systems, 3: 159–175. |
Библиографическая ссылка |
Dangelmayr, G. 1986. Steady-state mode interactions in the presence of O(2) symmetry. Dynamics and Stability of Systems, 1: 159–185. |
Библиографическая ссылка |
Dangelmayr, G. and Armbruster, D. 1983. Classification of Z<sub>2</sub>-equivariant imperfect bifurcations with corank 2. Proceedings of the London Mathematical Society. 1983. pp.517–546. |
Библиографическая ссылка |
Dangelmayr, G. and Knobloch, E. 1987. The Takens–Bogdanov bifurcation with O(2) symmetry. . Philosophical Transactions of the Royal Society, A322: 243–279. |
Библиографическая ссылка |
Davey, A. 1962. The growth of Taylor vortices in flow between rotating cyhnders. . Journal of Fluid Mechanics, 14: 336–368. |
Библиографическая ссылка |
Davey, A., DiPrima, R. C. and Stuart, J. T. 1968. On the instability of Taylor vortices. . Journal of Fluid Mechanics, 31: 17–52. |
Библиографическая ссылка |
Demay, Y. and looss, G. 1985. Calcul des solutions bifurquées pour le probléme de Couette–Taylor avec les deux cylindres en rotation. . Journal de Mècanique Theoretique et Appliqué., 31: 193–216. Numéro special ‘Bifurcations et comportements chaotiques’ |
Библиографическая ссылка |
Dinar, N. and Keller, H. B. 1986. Computations of Taylor vortex flows using multigrid methods, To appear |
Библиографическая ссылка |
DiPrima, R. C., Eagles, P. M. and Sijbrand, J. 1984. “Bifurcation near multiple eigenvalues for the flow between concentric counterrotating cylinders. ”. In Numerical Methods for Bifurcation Problems. , Edited by: Küpper, T., Mittelmann, H. D. and Weber, H. Vol. 70 , 495–501. Boston: Birkhäuser. |
Библиографическая ссылка |
DiPrima, R. C. and Grannick, R. N. 1971. “A nonlinear investigation of the stability of flow between counter-rotating cylinders. ”. In Instability in Continuous Systems, Edited by: Leipholz, H. 55–60. Berlin : Springer. |
Библиографическая ссылка |
DiPrima, R. C. and Sijbrand, J. 1982. “Interactions of axisymmetric and non-axisymmetric disturbances in the flow betweenconcentric rotating cylinders: bifurcations near multiple eigenvalues. ”. In Stability in the Mechanics of Continua , Edited by: Schroeder, F. H. 383–386. Berlin: Springer. |
Библиографическая ссылка |
DiPrima, R. C. and Swinney, H. L. 1981. “Instabilities and transition in flow between concentric rotating cylinders. ”. In Hydrodynamic Instabilities and the Transition to Turbulence Topics in Applied Physics , Edited by: Swinney, H. L. and Gollub, J. P. Vol. 45, 139–180. Berlin: Springer. |
Библиографическая ссылка |
Eagles, P. M. 1971. On the stability of Taylor vortices by fifth order amplitude expansions. Journal of Fluid Mechanics, 49: 529–550. |
Библиографическая ссылка |
Elphick, E., Tirapegui, E., Brachet, M. E., Coullet, P. and looss, G. 1987. A simple global characterization for normal forms of singular vector fields. . Physica, D29: 95–127. |
Библиографическая ссылка |
Gollub, J. P. and Swinney, H. L. S. 1975. Onset of turbulence in a rotating fluid. . Physics Review Letters, 35: 927–930. |
Библиографическая ссылка |
Golubitsky, M. and Langford, W. F. 1988. Pattern formation and bistability in flow between counterrotating cylinders. . Physica, D32: 362–392. |
Библиографическая ссылка |
Golubitsky, M. and Stewart, I. N. 1985. Hopf bifurcation in the presence of symmetry. . Archive for Rational Mechanics and Analysis, 87: 107–165. |
Библиографическая ссылка |
Golubitsky, M. and Stewart, I. N. 1986. Symmetry and stability in Taylor-Couette flow. SIAM Journal on Mathematical Analysis, 17: 249–288. |
Библиографическая ссылка |
Golubitsky, M., Stewart, I. N. and Schaeffer, D. G. 1988. Singularities and Groups in Bifurcation Theory , Vol. II, New York: Springer. |
Библиографическая ссылка |
Gorman, M., Reith, L. A. and Swinney, H. L. 1980. “Modulation patterns, multiple frequencies, and other phenomena in circular Couetteflow. ”. In Nonlinear Dynamics, Edited by: Helleman, R. Vol. 357, 10–21. Annals of the New York Academy of Sciences. |
Библиографическая ссылка |
Gorman, M., Swinney, H. L. and Rand, D. A. 1981. Doubly periodic circular Couette flow: Experiments compared with predictions from dynamics and symmetry. . Physics Review Letters, 46: 992–995. |
Библиографическая ссылка |
Guckenheimer, J. 1981. “On a codimension two bifurcation. ”. In Dynamical Systems and Turbulence, Warwick 1980 Lecture Notes in Mathematics , Edited by: Rand, D. A. and Young, L.-S. Vol. 898, 99–142. Berlin: Springer. |
Библиографическая ссылка |
Guckenheimer, J. 1986. “A codimension two bifurcation with circular symmetry. ”. In Multiparameter Bifurcation Theory, Edited by: Golubitsky, M. and Guckenheimer, J. Vol. 56, 175–184. Providence: American Mathematical Society. Contemporary Mathematics |
Библиографическая ссылка |
Guckenheimer, J. and Holmes, P. 1983. Nonlinear Oscillations, Dynamical Systems, and Bifurcation of Vector Fields , Vol. 42, New York: Springer. Applied Mathematical Sciences |
Библиографическая ссылка |
Hill, A. S. 1989. “O(2)-equivariant mode interactions”. In Ph.D. Thesis, Mathematics Institute, University of Warwick.. |
Библиографическая ссылка |
Hill, A. S. and Stewart, I. N. 1991. Hopf-steady-state mode interactions with O(2) symmetry. Dynamics and Stability of Systems, 6 : 149–171. 1989 |
Библиографическая ссылка |
Holmes, P. 1980. “Unfolding a degenerate nonlinear oscillator: a codimension two bifurcation”. In Nonlinear Dynamics , Edited by: Helleman, R. Vol. 357, 489–505. Annals of the New York Academy of Sciences. |
Библиографическая ссылка |
looss, G. 1986. Secondary bifurcation of Taylor vortices into wavy inflow and wavy outflow boundaries. . Journal of Fluid Mechanics, 173: 273–288. |
Библиографическая ссылка |
Jones, C. A. 1982. On flow between counter-rotating cyhnders. . Journal of Fluid Mechanics, 120: 433–450. |
Библиографическая ссылка |
Kirchgassner, K. and Sorger, P. 1969. Branching analysis for the Taylor problem. . Quarterly Journal of Mechanics and Applied Mathematics, 22: 183–209. |
Библиографическая ссылка |
Krueger, E. R., Gross, A. and DiPrima, R. C. 1966. On the relative importance of Taylor-vortex and non-axisymmetric modes in flow between rotating cylinders. . Journal of Fluid Mechanics, 24: 521–538. |
Библиографическая ссылка |
Krupa, M. 1988. “Bifurcations of critical group orbits”. In Ph.D. Thesis, University of Houston.. |
Библиографическая ссылка |
Labouriau, I. S. 1985. Degenerate Hopf bifurcation and nerve impulse. . SIAM Journal on Mathematical Analysis, 16: 1121–1133. |
Библиографическая ссылка |
Langford, W. F. 1979. Periodic and steady-state mode interactions lead to tori. . SIAM Journal on Applied Mathematics, 37: 22–48. |
Библиографическая ссылка |
Langford, W. F. 1986. “Equivariant normal forms for the Taylor–Couette problem. ”. In Multiparameter Bifurcation Problems. , Edited by: Golubitsky, M. and Guckenheimer, J. Vol. 56, 363–365. Providence : American Mathematical Society. Contemporary Mathematics |
Библиографическая ссылка |
Langford, W. F., Tagg, R., Kostelich, E., Swinney, H. L. and Golubitsky, M. 1988. Primary instabihties and bicriticality in flow between counterrotating cylinders. . Physics of Fluids, 31: 776–785. |
Библиографическая ссылка |
Laure, P. 1987. Bifurcation secondaire de solutions quasi-périodiques pour le probléme de Couette–Taylor. . Comptes Rendues Hebdomadaires des Séances de l'Academic des Sciences, Paris, I 305: 493–496. |
Библиографическая ссылка |
Laure, P. and Demay, Y. 1986. SymboHc computation and equations on the center manifold: application to the Taylor-Couette problem. . Computers and Fluids, to appear |
Библиографическая ссылка |
Marsden, J. E. and McCracken, M., eds. 1976. The Hopf bifurcation and its Applications, New York: Springer. |
Библиографическая ссылка |
Mullin, T., Pfister, G. and Lorenzen, A. 1982. New observations on hysteresis effects in Taylor–Couette flow. . Physics of Fluids, 25: 1134–1136. |
Библиографическая ссылка |
Mullin, T. and Price, T. J. 1989. An experimental observation of chaos arising from the interaction of steady and time-dependent flows. Nature, 340: 294–296. |
Библиографическая ссылка |
Rand, D. A. 1982. Dynamics and symmetry: predictions for modulated waves in rotating fluids. . Archive for Rational Mechanics and Analysis, 79: 1–38. |
Библиографическая ссылка |
Roberts, P. H., Donnelly, R. J. and Schwarz, K. W. 1965. Experiments on the stability of viscous flow between rotating cylinders VI: finiteamplitude experiments. . Proceedings of the Royal Society, A283: 531–556. Appendix (pp. 550-556) to |
Библиографическая ссылка |
Sattinger, D. H. Branching in the Presence of Symmetry. CBMS Regional Conference Series in Applied Mathematics. Philadelphia : SIAM. |
Библиографическая ссылка |
Schecter, S. 1976. “Bifurcation with symmetry. ”. In The Hopf bifurcation and its Applications, Edited by: Marsden, J. E. and McCracken, M. 224–249. New York : Springer. |
Библиографическая ссылка |
Shaw, R. S., Andereck, C. D., Reith, L. A. and Swinney, H. L. 1982. Superposition of travelling waves in the circular Couette system. . Physics Review Letters, 48: 1172–1175. |
Библиографическая ссылка |
Signoret, F. and looss, G. 1987. “Une singularite de codimension 3 dans le probleme de Couette-Taylor”. Nice. Preprint |
Библиографическая ссылка |
Snyder, H. A. 1968a. Stability of rotating Couette flow I. Asymmetric waveforms. . Physics of Fluids, 11: 728–734. |
Библиографическая ссылка |
Snyder, H. A. 1968b. Stabihty of rotating Couette flow II. Comparison with numerical results. Physics of Fluids, 11 : 1599–1605. |
Библиографическая ссылка |
Stewart, I. N. 1988. Stabihty of periodic solutions in symmetric Hopf bifurcation. . Dynamics and Stability of Systems, 2: 149–165. |
Библиографическая ссылка |
Stewart, I. N. 1989. “Broken symmetry and the formation of spiral patterns in fluids”. In Spiral Symmetry , Edited by: Pickover, Clifford. Singapore: World Scientific. to appear |
Библиографическая ссылка |
Tagg, R. and Swinney, H. L. S. 1988. Spontaneous alternation of travelling waves in spiral vortex flow between counterrotating cylinders. To appear, |
Библиографическая ссылка |
Tagg, R., Dornblaser, B., Edwards, W. S. and Swinney, H. L. S. 1988. Critical dynamics near the spiral-Taylor vortex codimension-two point. To appear, |
Библиографическая ссылка |
Zeeman, E. C. 1981. “Bifurcation, catastrophe, and turbulence. ”. In New Directions in Applied Mathematics, Edited by: Hilton, P. J. and Young, G. S. 109–153. New York: Springer. |